focus_traversal.dart 71.8 KB
Newer Older
Ian Hickson's avatar
Ian Hickson committed
1
// Copyright 2014 The Flutter Authors. All rights reserved.
2 3 4 5 6
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

import 'package:flutter/foundation.dart';

7
import 'actions.dart';
8
import 'basic.dart';
9
import 'editable_text.dart';
10
import 'focus_manager.dart';
11
import 'focus_scope.dart';
12
import 'framework.dart';
13 14
import 'scroll_position.dart';
import 'scrollable.dart';
15

16 17 18 19 20 21
// BuildContext/Element doesn't have a parent accessor, but it can be simulated
// with visitAncestorElements. _getAncestor is needed because
// context.getElementForInheritedWidgetOfExactType will return itself if it
// happens to be of the correct type. _getAncestor should be O(count), since we
// always return false at a specific ancestor. By default it returns the parent,
// which is O(1).
22 23
BuildContext? _getAncestor(BuildContext context, {int count = 1}) {
  BuildContext? target;
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  context.visitAncestorElements((Element ancestor) {
    count--;
    if (count == 0) {
      target = ancestor;
      return false;
    }
    return true;
  });
  return target;
}

void _focusAndEnsureVisible(
  FocusNode node, {
  ScrollPositionAlignmentPolicy alignmentPolicy = ScrollPositionAlignmentPolicy.explicit,
}) {
  node.requestFocus();
40
  Scrollable.ensureVisible(node.context!, alignment: 1.0, alignmentPolicy: alignmentPolicy);
41 42 43 44 45 46
}

// A class to temporarily hold information about FocusTraversalGroups when
// sorting their contents.
class _FocusTraversalGroupInfo {
  _FocusTraversalGroupInfo(
47 48 49
    _FocusTraversalGroupMarker? marker, {
    FocusTraversalPolicy? defaultPolicy,
    List<FocusNode>? members,
50 51 52 53
  })  : groupNode = marker?.focusNode,
        policy = marker?.policy ?? defaultPolicy ?? ReadingOrderTraversalPolicy(),
        members = members ?? <FocusNode>[];

54
  final FocusNode? groupNode;
55 56 57 58
  final FocusTraversalPolicy policy;
  final List<FocusNode> members;
}

59 60
/// A direction along either the horizontal or vertical axes.
///
61
/// This is used by the [DirectionalFocusTraversalPolicyMixin], and
62 63
/// [FocusNode.focusInDirection] to indicate which direction to look in for the
/// next focus.
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
enum TraversalDirection {
  /// Indicates a direction above the currently focused widget.
  up,

  /// Indicates a direction to the right of the currently focused widget.
  ///
  /// This direction is unaffected by the [Directionality] of the current
  /// context.
  right,

  /// Indicates a direction below the currently focused widget.
  down,

  /// Indicates a direction to the left of the currently focused widget.
  ///
  /// This direction is unaffected by the [Directionality] of the current
  /// context.
  left,

  // TODO(gspencer): Add diagonal traversal directions used by TV remotes and
  // game controllers when we support them.
}

/// An object used to specify a focus traversal policy used for configuring a
88
/// [FocusTraversalGroup] widget.
89 90
///
/// The focus traversal policy is what determines which widget is "next",
91 92
/// "previous", or in a direction from the widget associated with the currently
/// focused [FocusNode] (usually a [Focus] widget).
93 94 95 96
///
/// One of the pre-defined subclasses may be used, or define a custom policy to
/// create a unique focus order.
///
97 98 99
/// When defining your own, your subclass should implement [sortDescendants] to
/// provide the order in which you would like the descendants to be traversed.
///
100 101
/// See also:
///
102
///  * [FocusNode], for a description of the focus system.
103 104
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
105
///  * [FocusNode], which is affected by the traversal policy.
106
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
107 108 109
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
110 111
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
112 113
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
114
@immutable
115
abstract class FocusTraversalPolicy with Diagnosticable {
116 117
  /// Abstract const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
118 119
  const FocusTraversalPolicy();

120 121
  /// Returns the node that should receive focus if focus is traversing
  /// forwards, and there is no current focus.
122
  ///
123 124 125
  /// The node returned is the node that should receive focus if focus is
  /// traversing forwards (i.e. with [next]), and there is no current focus in
  /// the nearest [FocusScopeNode] that `currentNode` belongs to.
126
  ///
127
  /// The `currentNode` argument must not be null.
128
  ///
129 130 131 132
  /// The default implementation returns the [FocusScopeNode.focusedChild], if
  /// set, on the nearest scope of the `currentNode`, otherwise, returns the
  /// first node from [sortDescendants], or the given `currentNode` if there are
  /// no descendants.
133 134 135 136 137 138
  ///
  /// See also:
  ///
  ///  * [next], the function that is called to move the focus to the next node.
  ///  * [DirectionalFocusTraversalPolicyMixin.findFirstFocusInDirection], a
  ///    function that finds the first focusable widget in a particular direction.
139
  FocusNode? findFirstFocus(FocusNode currentNode) => _findInitialFocus(currentNode);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

  /// Returns the node that should receive focus if focus is traversing
  /// backwards, and there is no current focus.
  ///
  /// The node returned is the one that should receive focus if focus is
  /// traversing backwards (i.e. with [previous]), and there is no current focus
  /// in the nearest [FocusScopeNode] that `currentNode` belongs to.
  ///
  /// The `currentNode` argument must not be null.
  ///
  /// The default implementation returns the [FocusScopeNode.focusedChild], if
  /// set, on the nearest scope of the `currentNode`, otherwise, returns the
  /// last node from [sortDescendants], or the given `currentNode` if there are
  /// no descendants.
  ///
  /// See also:
  ///
  ///  * [previous], the function that is called to move the focus to the next node.
  ///  * [DirectionalFocusTraversalPolicyMixin.findFirstFocusInDirection], a
  ///    function that finds the first focusable widget in a particular direction.
  FocusNode findLastFocus(FocusNode currentNode) => _findInitialFocus(currentNode, fromEnd: true);

  FocusNode _findInitialFocus(FocusNode currentNode, {bool fromEnd = false}) {
163
    assert(currentNode != null);
164 165
    final FocusScopeNode scope = currentNode.nearestScope!;
    FocusNode? candidate = scope.focusedChild;
166
    if (candidate == null && scope.descendants.isNotEmpty) {
167
      final Iterable<FocusNode> sorted = _sortAllDescendants(scope, currentNode);
168 169 170 171 172
      if (sorted.isEmpty) {
        candidate = null;
      } else {
        candidate = fromEnd ? sorted.last : sorted.first;
      }
173 174 175 176 177 178 179
    }

    // If we still didn't find any candidate, use the current node as a
    // fallback.
    candidate ??= currentNode;
    return candidate;
  }
180

181 182 183
  /// Returns the first node in the given `direction` that should receive focus
  /// if there is no current focus in the scope to which the `currentNode`
  /// belongs.
184 185
  ///
  /// This is typically used by [inDirection] to determine which node to focus
186
  /// if it is called when no node is currently focused.
187 188
  ///
  /// All arguments must not be null.
189
  FocusNode? findFirstFocusInDirection(FocusNode currentNode, TraversalDirection direction);
190 191 192 193 194 195 196 197 198 199 200 201 202

  /// Clears the data associated with the given [FocusScopeNode] for this object.
  ///
  /// This is used to indicate that the focus policy has changed its mode, and
  /// so any cached policy data should be invalidated. For example, changing the
  /// direction in which focus is moving, or changing from directional to
  /// next/previous navigation modes.
  ///
  /// The default implementation does nothing.
  @mustCallSuper
  @protected
  void invalidateScopeData(FocusScopeNode node) {}

203
  /// This is called whenever the given [node] is re-parented into a new scope,
204 205 206 207 208 209 210
  /// so that the policy has a chance to update or invalidate any cached data
  /// that it maintains per scope about the node.
  ///
  /// The [oldScope] is the previous scope that this node belonged to, if any.
  ///
  /// The default implementation does nothing.
  @mustCallSuper
211
  void changedScope({FocusNode? node, FocusScopeNode? oldScope}) {}
212 213 214 215 216 217 218 219 220 221 222

  /// Focuses the next widget in the focus scope that contains the given
  /// [currentNode].
  ///
  /// This should determine what the next node to receive focus should be by
  /// inspecting the node tree, and then calling [FocusNode.requestFocus] on
  /// the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// The [currentNode] argument must not be null.
223
  bool next(FocusNode currentNode) => _moveFocus(currentNode, forward: true);
224 225 226 227 228 229 230 231 232 233 234

  /// Focuses the previous widget in the focus scope that contains the given
  /// [currentNode].
  ///
  /// This should determine what the previous node to receive focus should be by
  /// inspecting the node tree, and then calling [FocusNode.requestFocus] on
  /// the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// The [currentNode] argument must not be null.
235
  bool previous(FocusNode currentNode) => _moveFocus(currentNode, forward: false);
236 237 238 239 240 241 242 243 244 245 246 247 248

  /// Focuses the next widget in the given [direction] in the focus scope that
  /// contains the given [currentNode].
  ///
  /// This should determine what the next node to receive focus in the given
  /// [direction] should be by inspecting the node tree, and then calling
  /// [FocusNode.requestFocus] on the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// All arguments must not be null.
  bool inDirection(FocusNode currentNode, TraversalDirection direction);

249 250 251 252 253
  /// Sorts the given `descendants` into focus order.
  ///
  /// Subclasses should override this to implement a different sort for [next]
  /// and [previous] to use in their ordering. If the returned iterable omits a
  /// node that is a descendant of the given scope, then the user will be unable
254 255 256 257 258 259 260 261 262
  /// to use next/previous keyboard traversal to reach that node.
  ///
  /// The node used to initiate the traversal (the one passed to [next] or
  /// [previous]) is passed as `currentNode`.
  ///
  /// Having the current node in the list is what allows the algorithm to
  /// determine which nodes are adjacent to the current node. If the
  /// `currentNode` is removed from the list, then the focus will be unchanged
  /// when [next] or [previous] are called, and they will return false.
263 264 265 266 267 268 269 270 271 272
  ///
  /// This is not used for directional focus ([inDirection]), only for
  /// determining the focus order for [next] and [previous].
  ///
  /// When implementing an override for this function, be sure to use
  /// [mergeSort] instead of Dart's default list sorting algorithm when sorting
  /// items, since the default algorithm is not stable (items deemed to be equal
  /// can appear in arbitrary order, and change positions between sorts), whereas
  /// [mergeSort] is stable.
  @protected
273
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants, FocusNode currentNode);
274

275 276
  _FocusTraversalGroupMarker? _getMarker(BuildContext? context) {
    return context?.getElementForInheritedWidgetOfExactType<_FocusTraversalGroupMarker>()?.widget as _FocusTraversalGroupMarker?;
277 278 279 280
  }

  // Sort all descendants, taking into account the FocusTraversalGroup
  // that they are each in, and filtering out non-traversable/focusable nodes.
281
  List<FocusNode> _sortAllDescendants(FocusScopeNode scope, FocusNode currentNode) {
282
    assert(scope != null);
283
    final _FocusTraversalGroupMarker? scopeGroupMarker = _getMarker(scope.context);
284 285
    final FocusTraversalPolicy defaultPolicy = scopeGroupMarker?.policy ?? ReadingOrderTraversalPolicy();
    // Build the sorting data structure, separating descendants into groups.
286
    final Map<FocusNode?, _FocusTraversalGroupInfo> groups = <FocusNode?, _FocusTraversalGroupInfo>{};
287
    for (final FocusNode node in scope.descendants) {
288 289
      final _FocusTraversalGroupMarker? groupMarker = _getMarker(node.context);
      final FocusNode? groupNode = groupMarker?.focusNode;
290 291 292 293 294 295 296 297 298
      // Group nodes need to be added to their parent's node, or to the "null"
      // node if no parent is found. This creates the hierarchy of group nodes
      // and makes it so the entire group is sorted along with the other members
      // of the parent group.
      if (node == groupNode) {
        // To find the parent of the group node, we need to skip over the parent
        // of the Focus node in _FocusTraversalGroupState.build, and start
        // looking with that node's parent, since _getMarker will return the
        // context it was called on if it matches the type.
299 300 301
        final BuildContext? parentContext = _getAncestor(groupNode!.context!, count: 2);
        final _FocusTraversalGroupMarker? parentMarker = _getMarker(parentContext);
        final FocusNode? parentNode = parentMarker?.focusNode;
302
        groups[parentNode] ??= _FocusTraversalGroupInfo(parentMarker, members: <FocusNode>[], defaultPolicy: defaultPolicy);
303 304
        assert(!groups[parentNode]!.members.contains(node));
        groups[parentNode]!.members.add(groupNode);
305 306 307 308 309 310
        continue;
      }
      // Skip non-focusable and non-traversable nodes in the same way that
      // FocusScopeNode.traversalDescendants would.
      if (node.canRequestFocus && !node.skipTraversal) {
        groups[groupNode] ??= _FocusTraversalGroupInfo(groupMarker, members: <FocusNode>[], defaultPolicy: defaultPolicy);
311 312
        assert(!groups[groupNode]!.members.contains(node));
        groups[groupNode]!.members.add(node);
313 314 315 316
      }
    }

    // Sort the member lists using the individual policy sorts.
317 318 319 320
    for (final FocusNode? key in groups.keys) {
      final List<FocusNode> sortedMembers = groups[key]!.policy.sortDescendants(groups[key]!.members, currentNode).toList();
      groups[key]!.members.clear();
      groups[key]!.members.addAll(sortedMembers);
321 322 323 324 325 326 327
    }

    // Traverse the group tree, adding the children of members in the order they
    // appear in the member lists.
    final List<FocusNode> sortedDescendants = <FocusNode>[];
    void visitGroups(_FocusTraversalGroupInfo info) {
      for (final FocusNode node in info.members) {
328
        if (groups.containsKey(node)) {
329 330
          // This is a policy group focus node. Replace it with the members of
          // the corresponding policy group.
331
          visitGroups(groups[node]!);
332 333 334 335 336 337
        } else {
          sortedDescendants.add(node);
        }
      }
    }

338 339 340 341
    // Visit the children of the scope, if any.
    if (groups.isNotEmpty && groups.containsKey(scopeGroupMarker?.focusNode)) {
      visitGroups(groups[scopeGroupMarker?.focusNode]!);
    }
342 343 344 345 346 347 348 349 350 351 352

    // Remove the FocusTraversalGroup nodes themselves, which aren't focusable.
    // They were left in above because they were needed to find their members
    // during sorting.
    sortedDescendants.removeWhere((FocusNode node) {
      return !node.canRequestFocus || node.skipTraversal;
    });

    // Sanity check to make sure that the algorithm above doesn't diverge from
    // the one in FocusScopeNode.traversalDescendants in terms of which nodes it
    // finds.
353
    assert(
354
      sortedDescendants.length <= scope.traversalDescendants.length && sortedDescendants.toSet().difference(scope.traversalDescendants.toSet()).isEmpty,
355
      'Sorted descendants contains different nodes than FocusScopeNode.traversalDescendants would. '
356
      'These are the different nodes: ${sortedDescendants.toSet().difference(scope.traversalDescendants.toSet())}',
357 358 359 360
    );
    return sortedDescendants;
  }

361 362 363 364 365 366 367 368 369 370 371 372 373 374
  /// Moves the focus to the next node in the FocusScopeNode nearest to the
  /// currentNode argument, either in a forward or reverse direction, depending
  /// on the value of the forward argument.
  ///
  /// This function is called by the next and previous members to move to the
  /// next or previous node, respectively.
  ///
  /// Uses [findFirstFocus]/[findLastFocus] to find the first/last node if there is
  /// no [FocusScopeNode.focusedChild] set. If there is a focused child for the
  /// scope, then it calls sortDescendants to get a sorted list of descendants,
  /// and then finds the node after the current first focus of the scope if
  /// forward is true, and the node before it if forward is false.
  ///
  /// Returns true if a node requested focus.
375
  @protected
376
  bool _moveFocus(FocusNode currentNode, {required bool forward}) {
377
    assert(forward != null);
378
    final FocusScopeNode nearestScope = currentNode.nearestScope!;
379
    invalidateScopeData(nearestScope);
380
    final FocusNode? focusedChild = nearestScope.focusedChild;
381
    if (focusedChild == null) {
382
      final FocusNode? firstFocus = forward ? findFirstFocus(currentNode) : findLastFocus(currentNode);
383 384 385 386 387 388 389 390
      if (firstFocus != null) {
        _focusAndEnsureVisible(
          firstFocus,
          alignmentPolicy: forward ? ScrollPositionAlignmentPolicy.keepVisibleAtEnd : ScrollPositionAlignmentPolicy.keepVisibleAtStart,
        );
        return true;
      }
    }
391
    final List<FocusNode> sortedNodes = _sortAllDescendants(nearestScope, currentNode);
392 393 394 395 396 397 398 399 400 401
    if (forward && focusedChild == sortedNodes.last) {
      _focusAndEnsureVisible(sortedNodes.first, alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd);
      return true;
    }
    if (!forward && focusedChild == sortedNodes.first) {
      _focusAndEnsureVisible(sortedNodes.last, alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart);
      return true;
    }

    final Iterable<FocusNode> maybeFlipped = forward ? sortedNodes : sortedNodes.reversed;
402
    FocusNode? previousNode;
403 404 405 406 407 408 409 410 411 412 413 414
    for (final FocusNode node in maybeFlipped) {
      if (previousNode == focusedChild) {
        _focusAndEnsureVisible(
          node,
          alignmentPolicy: forward ? ScrollPositionAlignmentPolicy.keepVisibleAtEnd : ScrollPositionAlignmentPolicy.keepVisibleAtStart,
        );
        return true;
      }
      previousNode = node;
    }
    return false;
  }
415 416
}

417 418
// A policy data object for use by the DirectionalFocusTraversalPolicyMixin so
// it can keep track of the traversal history.
419
class _DirectionalPolicyDataEntry {
420
  const _DirectionalPolicyDataEntry({required this.direction, required this.node})
421 422 423 424 425 426 427 428
      : assert(direction != null),
        assert(node != null);

  final TraversalDirection direction;
  final FocusNode node;
}

class _DirectionalPolicyData {
429
  const _DirectionalPolicyData({required this.history}) : assert(history != null);
430 431 432 433 434 435 436 437 438 439 440 441 442

  /// A queue of entries that describe the path taken to the current node.
  final List<_DirectionalPolicyDataEntry> history;
}

/// A mixin class that provides an implementation for finding a node in a
/// particular direction.
///
/// This can be mixed in to other [FocusTraversalPolicy] implementations that
/// only want to implement new next/previous policies.
///
/// Since hysteresis in the navigation order is undesirable, this implementation
/// maintains a stack of previous locations that have been visited on the
443
/// policy data for the affected [FocusScopeNode]. If the previous direction
444 445 446 447 448 449 450
/// was the opposite of the current direction, then the this policy will request
/// focus on the previously focused node. Change to another direction other than
/// the current one or its opposite will clear the stack.
///
/// For instance, if the focus moves down, down, down, and then up, up, up, it
/// will follow the same path through the widgets in both directions. However,
/// if it moves down, down, down, left, right, and then up, up, up, it may not
451 452
/// follow the same path on the way up as it did on the way down, since changing
/// the axis of motion resets the history.
453 454 455
///
/// See also:
///
456
///  * [FocusNode], for a description of the focus system.
457 458 459
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
460 461 462
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
463 464
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
465 466 467 468 469 470 471 472 473 474
mixin DirectionalFocusTraversalPolicyMixin on FocusTraversalPolicy {
  final Map<FocusScopeNode, _DirectionalPolicyData> _policyData = <FocusScopeNode, _DirectionalPolicyData>{};

  @override
  void invalidateScopeData(FocusScopeNode node) {
    super.invalidateScopeData(node);
    _policyData.remove(node);
  }

  @override
475
  void changedScope({FocusNode? node, FocusScopeNode? oldScope}) {
476 477
    super.changedScope(node: node, oldScope: oldScope);
    if (oldScope != null) {
478
      _policyData[oldScope]?.history.removeWhere((_DirectionalPolicyDataEntry entry) {
479 480 481 482 483 484
        return entry.node == node;
      });
    }
  }

  @override
485
  FocusNode? findFirstFocusInDirection(FocusNode currentNode, TraversalDirection direction) {
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    assert(direction != null);
    assert(currentNode != null);
    switch (direction) {
      case TraversalDirection.up:
        // Find the bottom-most node so we can go up from there.
        return _sortAndFindInitial(currentNode, vertical: true, first: false);
      case TraversalDirection.down:
        // Find the top-most node so we can go down from there.
        return _sortAndFindInitial(currentNode, vertical: true, first: true);
      case TraversalDirection.left:
        // Find the right-most node so we can go left from there.
        return _sortAndFindInitial(currentNode, vertical: false, first: false);
      case TraversalDirection.right:
        // Find the left-most node so we can go right from there.
        return _sortAndFindInitial(currentNode, vertical: false, first: true);
    }
  }

504 505
  FocusNode? _sortAndFindInitial(FocusNode currentNode, {required bool vertical, required bool first}) {
    final Iterable<FocusNode> nodes = currentNode.nearestScope!.traversalDescendants;
506
    final List<FocusNode> sorted = nodes.toList();
507
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521
      if (vertical) {
        if (first) {
          return a.rect.top.compareTo(b.rect.top);
        } else {
          return b.rect.bottom.compareTo(a.rect.bottom);
        }
      } else {
        if (first) {
          return a.rect.left.compareTo(b.rect.left);
        } else {
          return b.rect.right.compareTo(a.rect.right);
        }
      }
    });
522

523
    if (sorted.isNotEmpty) {
524
      return sorted.first;
525
    }
526 527

    return null;
528 529 530 531 532 533 534 535 536 537
  }

  // Sorts nodes from left to right horizontally, and removes nodes that are
  // either to the right of the left side of the target node if we're going
  // left, or to the left of the right side of the target node if we're going
  // right.
  //
  // This doesn't need to take into account directionality because it is
  // typically intending to actually go left or right, not in a reading
  // direction.
538
  Iterable<FocusNode>? _sortAndFilterHorizontally(
539 540 541 542 543
    TraversalDirection direction,
    Rect target,
    FocusNode nearestScope,
  ) {
    assert(direction == TraversalDirection.left || direction == TraversalDirection.right);
544
    final Iterable<FocusNode> nodes = nearestScope.traversalDescendants;
545 546
    assert(!nodes.contains(nearestScope));
    final List<FocusNode> sorted = nodes.toList();
547
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) => a.rect.center.dx.compareTo(b.rect.center.dx));
548
    Iterable<FocusNode>? result;
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    switch (direction) {
      case TraversalDirection.left:
        result = sorted.where((FocusNode node) => node.rect != target && node.rect.center.dx <= target.left);
        break;
      case TraversalDirection.right:
        result = sorted.where((FocusNode node) => node.rect != target && node.rect.center.dx >= target.right);
        break;
      case TraversalDirection.up:
      case TraversalDirection.down:
        break;
    }
    return result;
  }

  // Sorts nodes from top to bottom vertically, and removes nodes that are
  // either below the top of the target node if we're going up, or above the
  // bottom of the target node if we're going down.
566
  Iterable<FocusNode>? _sortAndFilterVertically(
567 568 569 570 571
    TraversalDirection direction,
    Rect target,
    Iterable<FocusNode> nodes,
  ) {
    final List<FocusNode> sorted = nodes.toList();
572
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) => a.rect.center.dy.compareTo(b.rect.center.dy));
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    switch (direction) {
      case TraversalDirection.up:
        return sorted.where((FocusNode node) => node.rect != target && node.rect.center.dy <= target.top);
      case TraversalDirection.down:
        return sorted.where((FocusNode node) => node.rect != target && node.rect.center.dy >= target.bottom);
      case TraversalDirection.left:
      case TraversalDirection.right:
        break;
    }
    assert(direction == TraversalDirection.up || direction == TraversalDirection.down);
    return null;
  }

  // Updates the policy data to keep the previously visited node so that we can
  // avoid hysteresis when we change directions in navigation.
  //
  // Returns true if focus was requested on a previous node.
  bool _popPolicyDataIfNeeded(TraversalDirection direction, FocusScopeNode nearestScope, FocusNode focusedChild) {
591
    final _DirectionalPolicyData? policyData = _policyData[nearestScope];
592
    if (policyData != null && policyData.history.isNotEmpty && policyData.history.first.direction != direction) {
593 594 595
      if (policyData.history.last.node.parent == null) {
        // If a node has been removed from the tree, then we should stop
        // referencing it and reset the scope data so that we don't try and
596 597 598
        // request focus on it. This can happen in slivers where the rendered
        // node has been unmounted. This has the side effect that hysteresis
        // might not be avoided when items that go off screen get unmounted.
599 600 601
        invalidateScopeData(nearestScope);
        return false;
      }
602 603 604 605

      // Returns true if successfully popped the history.
      bool popOrInvalidate(TraversalDirection direction) {
        final FocusNode lastNode = policyData.history.removeLast().node;
606
        if (Scrollable.of(lastNode.context!) != Scrollable.of(primaryFocus!.context!)) {
607 608 609
          invalidateScopeData(nearestScope);
          return false;
        }
610
        final ScrollPositionAlignmentPolicy alignmentPolicy;
611
        switch (direction) {
612 613 614 615 616 617
          case TraversalDirection.up:
          case TraversalDirection.left:
            alignmentPolicy = ScrollPositionAlignmentPolicy.keepVisibleAtStart;
            break;
          case TraversalDirection.right:
          case TraversalDirection.down:
618
            alignmentPolicy = ScrollPositionAlignmentPolicy.keepVisibleAtEnd;
619 620 621 622 623 624 625 626 627
            break;
        }
        _focusAndEnsureVisible(
          lastNode,
          alignmentPolicy: alignmentPolicy,
        );
        return true;
      }

628 629 630 631 632 633 634 635 636 637 638
      switch (direction) {
        case TraversalDirection.down:
        case TraversalDirection.up:
          switch (policyData.history.first.direction) {
            case TraversalDirection.left:
            case TraversalDirection.right:
              // Reset the policy data if we change directions.
              invalidateScopeData(nearestScope);
              break;
            case TraversalDirection.up:
            case TraversalDirection.down:
639 640 641 642
              if (popOrInvalidate(direction)) {
                return true;
              }
              break;
643 644 645 646 647 648 649
          }
          break;
        case TraversalDirection.left:
        case TraversalDirection.right:
          switch (policyData.history.first.direction) {
            case TraversalDirection.left:
            case TraversalDirection.right:
650 651 652 653
              if (popOrInvalidate(direction)) {
                return true;
              }
              break;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            case TraversalDirection.up:
            case TraversalDirection.down:
              // Reset the policy data if we change directions.
              invalidateScopeData(nearestScope);
              break;
          }
      }
    }
    if (policyData != null && policyData.history.isEmpty) {
      invalidateScopeData(nearestScope);
    }
    return false;
  }

  void _pushPolicyData(TraversalDirection direction, FocusScopeNode nearestScope, FocusNode focusedChild) {
669
    final _DirectionalPolicyData? policyData = _policyData[nearestScope];
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    final _DirectionalPolicyDataEntry newEntry = _DirectionalPolicyDataEntry(node: focusedChild, direction: direction);
    if (policyData != null) {
      policyData.history.add(newEntry);
    } else {
      _policyData[nearestScope] = _DirectionalPolicyData(history: <_DirectionalPolicyDataEntry>[newEntry]);
    }
  }

  /// Focuses the next widget in the given [direction] in the [FocusScope] that
  /// contains the [currentNode].
  ///
  /// This determines what the next node to receive focus in the given
  /// [direction] will be by inspecting the node tree, and then calling
  /// [FocusNode.requestFocus] on it.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// Maintains a stack of previous locations that have been visited on the
688
  /// policy data for the affected [FocusScopeNode]. If the previous direction
689 690 691 692 693 694 695 696 697
  /// was the opposite of the current direction, then the this policy will
  /// request focus on the previously focused node. Change to another direction
  /// other than the current one or its opposite will clear the stack.
  ///
  /// If this function returns true when called by a subclass, then the subclass
  /// should return true and not request focus from any node.
  @mustCallSuper
  @override
  bool inDirection(FocusNode currentNode, TraversalDirection direction) {
698 699
    final FocusScopeNode nearestScope = currentNode.nearestScope!;
    final FocusNode? focusedChild = nearestScope.focusedChild;
700
    if (focusedChild == null) {
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
      final FocusNode firstFocus = findFirstFocusInDirection(currentNode, direction) ?? currentNode;
      switch (direction) {
        case TraversalDirection.up:
        case TraversalDirection.left:
          _focusAndEnsureVisible(
            firstFocus,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart,
          );
          break;
        case TraversalDirection.right:
        case TraversalDirection.down:
          _focusAndEnsureVisible(
            firstFocus,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd,
          );
          break;
      }
718 719 720 721 722
      return true;
    }
    if (_popPolicyDataIfNeeded(direction, nearestScope, focusedChild)) {
      return true;
    }
723 724
    FocusNode? found;
    final ScrollableState? focusedScrollable = Scrollable.of(focusedChild.context!);
725 726 727
    switch (direction) {
      case TraversalDirection.down:
      case TraversalDirection.up:
728
        Iterable<FocusNode>? eligibleNodes = _sortAndFilterVertically(
729 730
          direction,
          focusedChild.rect,
731
          nearestScope.traversalDescendants,
732
        );
733
        if (focusedScrollable != null && !focusedScrollable.position.atEdge) {
734
          final Iterable<FocusNode> filteredEligibleNodes = eligibleNodes!.where((FocusNode node) => Scrollable.of(node.context!) == focusedScrollable);
735 736 737 738
          if (filteredEligibleNodes.isNotEmpty) {
            eligibleNodes = filteredEligibleNodes;
          }
        }
739
        if (eligibleNodes!.isEmpty) {
740 741 742 743 744 745 746 747 748 749
          break;
        }
        List<FocusNode> sorted = eligibleNodes.toList();
        if (direction == TraversalDirection.up) {
          sorted = sorted.reversed.toList();
        }
        // Find any nodes that intersect the band of the focused child.
        final Rect band = Rect.fromLTRB(focusedChild.rect.left, -double.infinity, focusedChild.rect.right, double.infinity);
        final Iterable<FocusNode> inBand = sorted.where((FocusNode node) => !node.rect.intersect(band).isEmpty);
        if (inBand.isNotEmpty) {
750 751
          // The inBand list is already sorted by horizontal distance, so pick
          // the closest one.
752 753 754
          found = inBand.first;
          break;
        }
755 756 757
        // Only out-of-band targets remain, so pick the one that is closest the
        // to the center line horizontally.
        mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
758 759 760 761 762 763
          return (a.rect.center.dx - focusedChild.rect.center.dx).abs().compareTo((b.rect.center.dx - focusedChild.rect.center.dx).abs());
        });
        found = sorted.first;
        break;
      case TraversalDirection.right:
      case TraversalDirection.left:
764
        Iterable<FocusNode>? eligibleNodes = _sortAndFilterHorizontally(direction, focusedChild.rect, nearestScope);
765
        if (focusedScrollable != null && !focusedScrollable.position.atEdge) {
766
          final Iterable<FocusNode> filteredEligibleNodes = eligibleNodes!.where((FocusNode node) => Scrollable.of(node.context!) == focusedScrollable);
767 768 769 770
          if (filteredEligibleNodes.isNotEmpty) {
            eligibleNodes = filteredEligibleNodes;
          }
        }
771
        if (eligibleNodes!.isEmpty) {
772 773 774 775 776 777 778 779 780 781
          break;
        }
        List<FocusNode> sorted = eligibleNodes.toList();
        if (direction == TraversalDirection.left) {
          sorted = sorted.reversed.toList();
        }
        // Find any nodes that intersect the band of the focused child.
        final Rect band = Rect.fromLTRB(-double.infinity, focusedChild.rect.top, double.infinity, focusedChild.rect.bottom);
        final Iterable<FocusNode> inBand = sorted.where((FocusNode node) => !node.rect.intersect(band).isEmpty);
        if (inBand.isNotEmpty) {
782 783
          // The inBand list is already sorted by vertical distance, so pick the
          // closest one.
784 785 786
          found = inBand.first;
          break;
        }
787 788 789
        // Only out-of-band targets remain, so pick the one that is closest the
        // to the center line vertically.
        mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
790 791 792 793 794 795 796
          return (a.rect.center.dy - focusedChild.rect.center.dy).abs().compareTo((b.rect.center.dy - focusedChild.rect.center.dy).abs());
        });
        found = sorted.first;
        break;
    }
    if (found != null) {
      _pushPolicyData(direction, nearestScope, focusedChild);
797 798 799 800 801 802 803 804 805 806
      switch (direction) {
        case TraversalDirection.up:
        case TraversalDirection.left:
          _focusAndEnsureVisible(
            found,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart,
          );
          break;
        case TraversalDirection.down:
        case TraversalDirection.right:
807 808 809 810
          _focusAndEnsureVisible(
            found,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd,
          );
811 812
          break;
      }
813 814 815 816 817 818 819 820 821 822 823 824 825 826
      return true;
    }
    return false;
  }
}

/// A [FocusTraversalPolicy] that traverses the focus order in widget hierarchy
/// order.
///
/// This policy is used when the order desired is the order in which widgets are
/// created in the widget hierarchy.
///
/// See also:
///
827
///  * [FocusNode], for a description of the focus system.
828 829
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
830 831 832 833
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
834 835 836
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
class WidgetOrderTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
837
  @override
838
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants, FocusNode currentNode) => descendants;
839 840 841 842 843 844 845 846 847 848
}

// This class exists mainly for efficiency reasons: the rect is copied out of
// the node, because it will be accessed many times in the reading order
// algorithm, and the FocusNode.rect accessor does coordinate transformation. If
// not for this optimization, it could just be removed, and the node used
// directly.
//
// It's also a convenient place to put some utility functions having to do with
// the sort data.
849
class _ReadingOrderSortData with Diagnosticable {
850 851 852
  _ReadingOrderSortData(this.node)
      : assert(node != null),
        rect = node.rect,
853
        directionality = _findDirectionality(node.context!);
854

855
  final TextDirection? directionality;
856 857 858 859 860
  final Rect rect;
  final FocusNode node;

  // Find the directionality in force for a build context without creating a
  // dependency.
861 862
  static TextDirection? _findDirectionality(BuildContext context) {
    return (context.getElementForInheritedWidgetOfExactType<Directionality>()?.widget as Directionality?)?.textDirection;
863
  }
864

865
  /// Finds the common Directional ancestor of an entire list of groups.
866
  static TextDirection? commonDirectionalityOf(List<_ReadingOrderSortData> list) {
867
    final Iterable<Set<Directionality>> allAncestors = list.map<Set<Directionality>>((_ReadingOrderSortData member) => member.directionalAncestors.toSet());
868
    Set<Directionality>? common;
869 870 871
    for (final Set<Directionality> ancestorSet in allAncestors) {
      common ??= ancestorSet;
      common = common.intersection(ancestorSet);
872
    }
873
    if (common!.isEmpty) {
874 875 876 877
      // If there is no common ancestor, then arbitrarily pick the
      // directionality of the first group, which is the equivalent of the "first
      // strongly typed" item in a bidi algorithm.
      return list.first.directionality;
878
    }
879 880 881 882 883 884 885 886 887 888 889 890 891 892
    // Find the closest common ancestor. The memberAncestors list contains the
    // ancestors for all members, but the first member's ancestry was
    // added in order from nearest to furthest, so we can still use that
    // to determine the closest one.
    return list.first.directionalAncestors.firstWhere(common.contains).textDirection;
  }

  static void sortWithDirectionality(List<_ReadingOrderSortData> list, TextDirection directionality) {
    mergeSort<_ReadingOrderSortData>(list, compare: (_ReadingOrderSortData a, _ReadingOrderSortData b) {
      switch (directionality) {
        case TextDirection.ltr:
          return a.rect.left.compareTo(b.rect.left);
        case TextDirection.rtl:
          return b.rect.right.compareTo(a.rect.right);
893
      }
894 895
    });
  }
896

897 898 899 900 901
  /// Returns the list of Directionality ancestors, in order from nearest to
  /// furthest.
  Iterable<Directionality> get directionalAncestors {
    List<Directionality> getDirectionalityAncestors(BuildContext context) {
      final List<Directionality> result = <Directionality>[];
902
      InheritedElement? directionalityElement = context.getElementForInheritedWidgetOfExactType<Directionality>();
903 904 905
      while (directionalityElement != null) {
        result.add(directionalityElement.widget as Directionality);
        directionalityElement = _getAncestor(directionalityElement)?.getElementForInheritedWidgetOfExactType<Directionality>();
906
      }
907
      return result;
908
    }
909

910 911
    _directionalAncestors ??= getDirectionalityAncestors(node.context!);
    return _directionalAncestors!;
912 913
  }

914
  List<Directionality>? _directionalAncestors;
915 916

  @override
917 918 919 920 921 922
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<TextDirection>('directionality', directionality));
    properties.add(StringProperty('name', node.debugLabel, defaultValue: null));
    properties.add(DiagnosticsProperty<Rect>('rect', rect));
  }
923 924
}

925 926
// A class for containing group data while sorting in reading order while taking
// into account the ambient directionality.
927
class _ReadingOrderDirectionalGroupData with Diagnosticable {
928
  _ReadingOrderDirectionalGroupData(this.members);
929

930 931
  final List<_ReadingOrderSortData> members;

932
  TextDirection? get directionality => members.first.directionality;
933

934
  Rect? _rect;
935 936 937 938
  Rect get rect {
    if (_rect == null) {
      for (final Rect rect in members.map<Rect>((_ReadingOrderSortData data) => data.rect)) {
        _rect ??= rect;
939
        _rect = _rect!.expandToInclude(rect);
940 941
      }
    }
942
    return _rect!;
943 944 945 946 947 948
  }

  List<Directionality> get memberAncestors {
    if (_memberAncestors == null) {
      _memberAncestors = <Directionality>[];
      for (final _ReadingOrderSortData member in members) {
949
        _memberAncestors!.addAll(member.directionalAncestors);
950 951
      }
    }
952
    return _memberAncestors!;
953 954
  }

955
  List<Directionality>? _memberAncestors;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

  static void sortWithDirectionality(List<_ReadingOrderDirectionalGroupData> list, TextDirection directionality) {
    mergeSort<_ReadingOrderDirectionalGroupData>(list, compare: (_ReadingOrderDirectionalGroupData a, _ReadingOrderDirectionalGroupData b) {
      switch (directionality) {
        case TextDirection.ltr:
          return a.rect.left.compareTo(b.rect.left);
        case TextDirection.rtl:
          return b.rect.right.compareTo(a.rect.right);
      }
    });
  }

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<TextDirection>('directionality', directionality));
    properties.add(DiagnosticsProperty<Rect>('rect', rect));
    properties.add(IterableProperty<String>('members', members.map<String>((_ReadingOrderSortData member) {
      return '"${member.node.debugLabel}"(${member.rect})';
    })));
  }
977 978 979 980 981 982 983 984 985 986 987 988 989
}

/// Traverses the focus order in "reading order".
///
/// By default, reading order traversal goes in the reading direction, and then
/// down, using this algorithm:
///
/// 1. Find the node rectangle that has the highest `top` on the screen.
/// 2. Find any other nodes that intersect the infinite horizontal band defined
///    by the highest rectangle's top and bottom edges.
/// 3. Pick the closest to the beginning of the reading order from among the
///    nodes discovered above.
///
990 991
/// It uses the ambient [Directionality] in the context for the enclosing
/// [FocusTraversalGroup] to determine which direction is "reading order".
992 993 994
///
/// See also:
///
995
///  * [FocusNode], for a description of the focus system.
996 997 998
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
999 1000 1001
///    creation order to describe the order of traversal.
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
1002 1003
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
1004
class ReadingOrderTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
1005 1006 1007 1008
  // Collects the given candidates into groups by directionality. The candidates
  // have already been sorted as if they all had the directionality of the
  // nearest Directionality ancestor.
  List<_ReadingOrderDirectionalGroupData> _collectDirectionalityGroups(Iterable<_ReadingOrderSortData> candidates) {
1009
    TextDirection? currentDirection = candidates.first.directionality;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    List<_ReadingOrderSortData> currentGroup = <_ReadingOrderSortData>[];
    final List<_ReadingOrderDirectionalGroupData> result = <_ReadingOrderDirectionalGroupData>[];
    // Split candidates into runs of the same directionality.
    for (final _ReadingOrderSortData candidate in candidates) {
      if (candidate.directionality == currentDirection) {
        currentGroup.add(candidate);
        continue;
      }
      currentDirection = candidate.directionality;
      result.add(_ReadingOrderDirectionalGroupData(currentGroup));
      currentGroup = <_ReadingOrderSortData>[candidate];
1021
    }
1022 1023 1024 1025 1026 1027 1028 1029
    if (currentGroup.isNotEmpty) {
      result.add(_ReadingOrderDirectionalGroupData(currentGroup));
    }
    // Sort each group separately. Each group has the same directionality.
    for (final _ReadingOrderDirectionalGroupData bandGroup in result) {
      if (bandGroup.members.length == 1) {
        continue; // No need to sort one node.
      }
1030
      _ReadingOrderSortData.sortWithDirectionality(bandGroup.members, bandGroup.directionality!);
1031 1032
    }
    return result;
1033 1034
  }

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  _ReadingOrderSortData _pickNext(List<_ReadingOrderSortData> candidates) {
    // Find the topmost node by sorting on the top of the rectangles.
    mergeSort<_ReadingOrderSortData>(candidates, compare: (_ReadingOrderSortData a, _ReadingOrderSortData b) => a.rect.top.compareTo(b.rect.top));
    final _ReadingOrderSortData topmost = candidates.first;

    // Find the candidates that are in the same horizontal band as the current one.
    List<_ReadingOrderSortData> inBand(_ReadingOrderSortData current, Iterable<_ReadingOrderSortData> candidates) {
      final Rect band = Rect.fromLTRB(double.negativeInfinity, current.rect.top, double.infinity, current.rect.bottom);
      return candidates.where((_ReadingOrderSortData item) {
        return !item.rect.intersect(band).isEmpty;
      }).toList();
1046 1047
    }

1048 1049 1050 1051 1052 1053 1054
    final List<_ReadingOrderSortData> inBandOfTop = inBand(topmost, candidates);
    // It has to have at least topmost in it if the topmost is not degenerate.
    assert(topmost.rect.isEmpty || inBandOfTop.isNotEmpty);

    // The topmost rect in is in a band by itself, so just return that one.
    if (inBandOfTop.length <= 1) {
      return topmost;
1055 1056
    }

1057 1058 1059 1060 1061 1062
    // Now that we know there are others in the same band as the topmost, then pick
    // the one at the beginning, depending on the text direction in force.

    // Find out the directionality of the nearest common Directionality
    // ancestor for all nodes. This provides a base directionality to use for
    // the ordering of the groups.
1063
    final TextDirection? nearestCommonDirectionality = _ReadingOrderSortData.commonDirectionalityOf(inBandOfTop);
1064 1065 1066 1067 1068 1069

    // Do an initial common-directionality-based sort to get consistent geometric
    // ordering for grouping into directionality groups. It has to use the
    // common directionality to be able to group into sane groups for the
    // given directionality, since rectangles can overlap and give different
    // results for different directionalities.
1070
    _ReadingOrderSortData.sortWithDirectionality(inBandOfTop, nearestCommonDirectionality!);
1071 1072 1073 1074 1075 1076 1077 1078

    // Collect the top band into internally sorted groups with shared directionality.
    final List<_ReadingOrderDirectionalGroupData> bandGroups = _collectDirectionalityGroups(inBandOfTop);
    if (bandGroups.length == 1) {
      // There's only one directionality group, so just send back the first
      // one in that group, since it's already sorted.
      return bandGroups.first.members.first;
    }
1079

1080 1081 1082 1083
    // Sort the groups based on the common directionality and bounding boxes.
    _ReadingOrderDirectionalGroupData.sortWithDirectionality(bandGroups, nearestCommonDirectionality);
    return bandGroups.first.members.first;
  }
1084

1085 1086 1087
  // Sorts the list of nodes based on their geometry into the desired reading
  // order based on the directionality of the context for each node.
  @override
1088
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants, FocusNode currentNode) {
1089 1090 1091
    assert(descendants != null);
    if (descendants.length <= 1) {
      return descendants;
1092 1093
    }

1094 1095
    final List<_ReadingOrderSortData> data = <_ReadingOrderSortData>[
      for (final FocusNode node in descendants) _ReadingOrderSortData(node),
1096
    ];
1097

1098 1099 1100 1101 1102 1103 1104
    final List<FocusNode> sortedList = <FocusNode>[];
    final List<_ReadingOrderSortData> unplaced = data;

    // Pick the initial widget as the one that is at the beginning of the band
    // of the topmost, or the topmost, if there are no others in its band.
    _ReadingOrderSortData current = _pickNext(unplaced);
    sortedList.add(current.node);
1105 1106
    unplaced.remove(current);

1107 1108 1109
    // Go through each node, picking the next one after eliminating the previous
    // one, since removing the previously picked node will expose a new band in
    // which to choose candidates.
1110
    while (unplaced.isNotEmpty) {
1111
      final _ReadingOrderSortData next = _pickNext(unplaced);
1112
      current = next;
1113
      sortedList.add(current.node);
1114 1115
      unplaced.remove(current);
    }
1116
    return sortedList;
1117
  }
1118
}
1119

1120 1121
/// Base class for all sort orders for [OrderedTraversalPolicy] traversal.
///
1122
/// {@template flutter.widgets.FocusOrder.comparable}
1123
/// Only orders of the same type are comparable. If a set of widgets in the same
1124 1125 1126 1127
/// [FocusTraversalGroup] contains orders that are not comparable with each
/// other, it will assert, since the ordering between such keys is undefined. To
/// avoid collisions, use a [FocusTraversalGroup] to group similarly ordered
/// widgets together.
1128
///
1129 1130 1131
/// When overriding, [FocusOrder.doCompare] must be overridden instead of
/// [FocusOrder.compareTo], which calls [FocusOrder.doCompare] to do the actual
/// comparison.
1132 1133 1134 1135
/// {@endtemplate}
///
/// See also:
///
1136 1137 1138 1139 1140 1141 1142 1143
/// * [FocusTraversalGroup], a widget that groups together and imposes a
///   traversal policy on the [Focus] nodes below it in the widget hierarchy.
/// * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
///   for the [OrderedTraversalPolicy] to use.
/// * [NumericFocusOrder], for a focus order that describes its order with a
///   `double`.
/// * [LexicalFocusOrder], a focus order that assigns a string-based lexical
///   traversal order to a [FocusTraversalOrder] widget.
1144
@immutable
1145
abstract class FocusOrder with Diagnosticable implements Comparable<FocusOrder> {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
  /// Abstract const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const FocusOrder();

  /// Compares this object to another [Comparable].
  ///
  /// When overriding [FocusOrder], implement [doCompare] instead of this
  /// function to do the actual comparison.
  ///
  /// Returns a value like a [Comparator] when comparing `this` to [other].
  /// That is, it returns a negative integer if `this` is ordered before [other],
  /// a positive integer if `this` is ordered after [other],
  /// and zero if `this` and [other] are ordered together.
  ///
  /// The [other] argument must be a value that is comparable to this object.
  @override
  @nonVirtual
  int compareTo(FocusOrder other) {
    assert(
1165 1166 1167 1168
      runtimeType == other.runtimeType,
      "The sorting algorithm must not compare incomparable keys, since they don't "
      'know how to order themselves relative to each other. Comparing $this with $other',
    );
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    return doCompare(other);
  }

  /// The subclass implementation called by [compareTo] to compare orders.
  ///
  /// The argument is guaranteed to be of the same [runtimeType] as this object.
  ///
  /// The method should return a negative number if this object comes earlier in
  /// the sort order than the `other` argument; and a positive number if it
  /// comes later in the sort order than `other`. Returning zero causes the
  /// system to fall back to the secondary sort order defined by
  /// [OrderedTraversalPolicy.secondary]
  @protected
  int doCompare(covariant FocusOrder other);
}

/// Can be given to a [FocusTraversalOrder] widget to assign a numerical order
/// to a widget subtree that is using a [OrderedTraversalPolicy] to define the
/// order in which widgets should be traversed with the keyboard.
///
1189
/// {@macro flutter.widgets.FocusOrder.comparable}
1190 1191 1192 1193
///
/// See also:
///
///  * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
1194
///    for the [OrderedTraversalPolicy] to use.
1195
class NumericFocusOrder extends FocusOrder {
1196
  /// Creates an object that describes a focus traversal order numerically.
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
  const NumericFocusOrder(this.order) : assert(order != null);

  /// The numerical order to assign to the widget subtree using
  /// [FocusTraversalOrder].
  ///
  /// Determines the placement of this widget in a sequence of widgets that defines
  /// the order in which this node is traversed by the focus policy.
  ///
  /// Lower values will be traversed first.
  final double order;

  @override
  int doCompare(NumericFocusOrder other) => order.compareTo(other.order);

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DoubleProperty('order', order));
  }
}

/// Can be given to a [FocusTraversalOrder] widget to use a String to assign a
/// lexical order to a widget subtree that is using a
/// [OrderedTraversalPolicy] to define the order in which widgets should be
/// traversed with the keyboard.
///
/// This sorts strings using Dart's default string comparison, which is not
1224
/// locale-specific.
1225
///
1226
/// {@macro flutter.widgets.FocusOrder.comparable}
1227 1228 1229 1230
///
/// See also:
///
///  * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
1231
///    for the [OrderedTraversalPolicy] to use.
1232
class LexicalFocusOrder extends FocusOrder {
1233
  /// Creates an object that describes a focus traversal order lexically.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  const LexicalFocusOrder(this.order) : assert(order != null);

  /// The String that defines the lexical order to assign to the widget subtree
  /// using [FocusTraversalOrder].
  ///
  /// Determines the placement of this widget in a sequence of widgets that defines
  /// the order in which this node is traversed by the focus policy.
  ///
  /// Lower lexical values will be traversed first (e.g. 'a' comes before 'z').
  final String order;

  @override
  int doCompare(LexicalFocusOrder other) => order.compareTo(other.order);

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(StringProperty('order', order));
  }
}

// Used to help sort the focus nodes in an OrderedFocusTraversalPolicy.
class _OrderedFocusInfo {
1257
  const _OrderedFocusInfo({required this.node, required this.order})
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
      : assert(node != null),
        assert(order != null);

  final FocusNode node;
  final FocusOrder order;
}

/// A [FocusTraversalPolicy] that orders nodes by an explicit order that resides
/// in the nearest [FocusTraversalOrder] widget ancestor.
///
1268
/// {@macro flutter.widgets.FocusOrder.comparable}
1269
///
1270
/// {@tool dartpad}
1271 1272 1273 1274
/// This sample shows how to assign a traversal order to a widget. In the
/// example, the focus order goes from bottom right (the "One" button) to top
/// left (the "Six" button).
///
1275
/// ** See code in examples/api/lib/widgets/focus_traversal/ordered_traversal_policy.0.dart **
1276 1277 1278 1279
/// {@end-tool}
///
/// See also:
///
1280 1281 1282
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [NumericFocusOrder], a focus order that assigns a numeric traversal order
///    to a [FocusTraversalOrder] widget.
///  * [LexicalFocusOrder], a focus order that assigns a string-based lexical
///    traversal order to a [FocusTraversalOrder] widget.
///  * [FocusOrder], an abstract base class for all types of focus traversal
///    orderings.
class OrderedTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
  /// Constructs a traversal policy that orders widgets for keyboard traversal
  /// based on an explicit order.
  ///
  /// If [secondary] is null, it will default to [ReadingOrderTraversalPolicy].
  OrderedTraversalPolicy({this.secondary});

  /// This is the policy that is used when a node doesn't have an order
  /// assigned, or when multiple nodes have orders which are identical.
  ///
  /// If not set, this defaults to [ReadingOrderTraversalPolicy].
  ///
  /// This policy determines the secondary sorting order of nodes which evaluate
  /// as having an identical order (including those with no order specified).
  ///
  /// Nodes with no order specified will be sorted after nodes with an explicit
  /// order.
1309
  final FocusTraversalPolicy? secondary;
1310 1311

  @override
1312
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants, FocusNode currentNode) {
1313
    final FocusTraversalPolicy secondaryPolicy = secondary ?? ReadingOrderTraversalPolicy();
1314
    final Iterable<FocusNode> sortedDescendants = secondaryPolicy.sortDescendants(descendants, currentNode);
1315 1316 1317
    final List<FocusNode> unordered = <FocusNode>[];
    final List<_OrderedFocusInfo> ordered = <_OrderedFocusInfo>[];
    for (final FocusNode node in sortedDescendants) {
1318
      final FocusOrder? order = FocusTraversalOrder.maybeOf(node.context!);
1319 1320 1321 1322
      if (order != null) {
        ordered.add(_OrderedFocusInfo(node: node, order: order));
      } else {
        unordered.add(node);
1323
      }
1324
    }
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    mergeSort<_OrderedFocusInfo>(ordered, compare: (_OrderedFocusInfo a, _OrderedFocusInfo b) {
      assert(
        a.order.runtimeType == b.order.runtimeType,
        'When sorting nodes for determining focus order, the order (${a.order}) of '
        "node ${a.node}, isn't the same type as the order (${b.order}) of ${b.node}. "
        "Incompatible order types can't be compared.  Use a FocusTraversalGroup to group "
        'similar orders together.',
      );
      return a.order.compareTo(b.order);
    });
    return ordered.map<FocusNode>((_OrderedFocusInfo info) => info.node).followedBy(unordered);
  }
}
1338

1339 1340 1341
/// An inherited widget that describes the order in which its child subtree
/// should be traversed.
///
1342
/// {@macro flutter.widgets.FocusOrder.comparable}
1343 1344 1345 1346
///
/// The order for a widget is determined by the [FocusOrder] returned by
/// [FocusTraversalOrder.of] for a particular context.
class FocusTraversalOrder extends InheritedWidget {
1347 1348
  /// Creates an inherited widget used to describe the focus order of
  /// the [child] subtree.
1349
  const FocusTraversalOrder({Key? key, required this.order, required Widget child}) : super(key: key, child: child);
1350 1351

  /// The order for the widget descendants of this [FocusTraversalOrder].
1352
  final FocusOrder order;
1353 1354 1355 1356 1357 1358

  /// Finds the [FocusOrder] in the nearest ancestor [FocusTraversalOrder] widget.
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
1359 1360 1361 1362
  ///
  /// If no [FocusTraversalOrder] ancestor exists, or the order is null, this
  /// will assert in debug mode, and throw an exception in release mode.
  static FocusOrder of(BuildContext context) {
1363
    assert(context != null);
1364
    final FocusTraversalOrder? marker = context.getElementForInheritedWidgetOfExactType<FocusTraversalOrder>()?.widget as FocusTraversalOrder?;
1365
    assert(() {
1366 1367 1368 1369
      if (marker == null) {
        throw FlutterError(
          'FocusTraversalOrder.of() was called with a context that '
          'does not contain a FocusTraversalOrder widget. No TraversalOrder widget '
1370 1371 1372
          'ancestor could be found starting from the context that was passed to '
          'FocusTraversalOrder.of().\n'
          'The context used was:\n'
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
          '  $context',
        );
      }
      return true;
    }());
    return marker!.order;
  }

  /// Finds the [FocusOrder] in the nearest ancestor [FocusTraversalOrder] widget.
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
  ///
  /// If no [FocusTraversalOrder] ancestor exists, or the order is null, returns null.
  static FocusOrder? maybeOf(BuildContext context) {
    assert(context != null);
    final FocusTraversalOrder? marker = context.getElementForInheritedWidgetOfExactType<FocusTraversalOrder>()?.widget as FocusTraversalOrder?;
    return marker?.order;
1392 1393
  }

1394 1395
  // Since the order of traversal doesn't affect display of anything, we don't
  // need to force a rebuild of anything that depends upon it.
1396
  @override
1397
  bool updateShouldNotify(InheritedWidget oldWidget) => false;
1398 1399

  @override
1400 1401 1402 1403
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<FocusOrder>('order', order));
  }
1404 1405
}

1406 1407 1408 1409 1410 1411 1412
/// A widget that describes the inherited focus policy for focus traversal for
/// its descendants, grouping them into a separate traversal group.
///
/// A traversal group is treated as one entity when sorted by the traversal
/// algorithm, so it can be used to segregate different parts of the widget tree
/// that need to be sorted using different algorithms and/or sort orders when
/// using an [OrderedTraversalPolicy].
1413
///
1414 1415 1416 1417
/// Within the group, it will use the given [policy] to order the elements. The
/// group itself will be ordered using the parent group's policy.
///
/// By default, traverses in reading order using [ReadingOrderTraversalPolicy].
1418
///
1419
/// To prevent the members of the group from being focused, set the
1420
/// [descendantsAreFocusable] attribute to false.
1421
///
1422
/// {@tool dartpad}
1423 1424 1425 1426 1427 1428 1429
/// This sample shows three rows of buttons, each grouped by a
/// [FocusTraversalGroup], each with different traversal order policies. Use tab
/// traversal to see the order they are traversed in.  The first row follows a
/// numerical order, the second follows a lexical order (ordered to traverse
/// right to left), and the third ignores the numerical order assigned to it and
/// traverses in widget order.
///
1430
/// ** See code in examples/api/lib/widgets/focus_traversal/focus_traversal_group.0.dart **
1431 1432
/// {@end-tool}
///
1433 1434
/// See also:
///
1435
///  * [FocusNode], for a description of the focus system.
1436
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
1437 1438 1439 1440 1441
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
1442 1443 1444
class FocusTraversalGroup extends StatefulWidget {
  /// Creates a [FocusTraversalGroup] object.
  ///
1445
  /// The [child] and [descendantsAreFocusable] arguments must not be null.
1446
  FocusTraversalGroup({
1447 1448
    Key? key,
    FocusTraversalPolicy? policy,
1449
    this.descendantsAreFocusable = true,
1450
    required this.child,
1451 1452
  })  : assert(descendantsAreFocusable != null),
        policy = policy ?? ReadingOrderTraversalPolicy(),
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        super(key: key);

  /// The policy used to move the focus from one focus node to another when
  /// traversing them using a keyboard.
  ///
  /// If not specified, traverses in reading order using
  /// [ReadingOrderTraversalPolicy].
  ///
  /// See also:
  ///
  ///  * [FocusTraversalPolicy] for the API used to impose traversal order
  ///    policy.
  ///  * [WidgetOrderTraversalPolicy] for a traversal policy that traverses
  ///    nodes in the order they are added to the widget tree.
  ///  * [ReadingOrderTraversalPolicy] for a traversal policy that traverses
  ///    nodes in the reading order defined in the widget tree, and then top to
  ///    bottom.
  final FocusTraversalPolicy policy;

1472 1473 1474 1475 1476
  /// {@macro flutter.widgets.Focus.descendantsAreFocusable}
  final bool descendantsAreFocusable;

  /// The child widget of this [FocusTraversalGroup].
  ///
1477
  /// {@macro flutter.widgets.ProxyWidget.child}
1478 1479
  final Widget child;

1480 1481 1482 1483 1484 1485 1486
  /// Returns the focus policy set by the [FocusTraversalGroup] that most
  /// tightly encloses the given [BuildContext].
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
  ///
1487
  /// Will assert if no [FocusTraversalGroup] ancestor is found.
1488
  ///
1489 1490 1491 1492 1493
  /// See also:
  ///
  ///  * [maybeOf] for a similar function that will return null if no
  ///    [FocusTraversalGroup] ancestor is found.
  static FocusTraversalPolicy of(BuildContext context) {
1494
    assert(context != null);
1495
    final _FocusTraversalGroupMarker? inherited = context.dependOnInheritedWidgetOfExactType<_FocusTraversalGroupMarker>();
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    assert(() {
      if (inherited == null) {
        throw FlutterError(
          'Unable to find a FocusTraversalGroup widget in the context.\n'
          'FocusTraversalGroup.of() was called with a context that does not contain a '
          'FocusTraversalGroup.\n'
          'No FocusTraversalGroup ancestor could be found starting from the context that was '
          'passed to FocusTraversalGroup.of(). This can happen because there is not a '
          'WidgetsApp or MaterialApp widget (those widgets introduce a FocusTraversalGroup), '
          'or it can happen if the context comes from a widget above those widgets.\n'
          'The context used was:\n'
          '  $context',
        );
      }
      return true;
    }());
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    return inherited!.policy;
  }

  /// Returns the focus policy set by the [FocusTraversalGroup] that most
  /// tightly encloses the given [BuildContext].
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
  ///
  /// Will return null if it doesn't find a [FocusTraversalGroup] ancestor.
  ///
  /// See also:
  ///
  ///  * [of] for a similar function that will throw if no [FocusTraversalGroup]
  ///    ancestor is found.
  static FocusTraversalPolicy? maybeOf(BuildContext context) {
    assert(context != null);
    final _FocusTraversalGroupMarker? inherited = context.dependOnInheritedWidgetOfExactType<_FocusTraversalGroupMarker>();
1531 1532 1533 1534
    return inherited?.policy;
  }

  @override
1535
  State<FocusTraversalGroup> createState() => _FocusTraversalGroupState();
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<FocusTraversalPolicy>('policy', policy));
  }
}

class _FocusTraversalGroupState extends State<FocusTraversalGroup> {
  // The internal focus node used to collect the children of this node into a
  // group, and to provide a context for the traversal algorithm to sort the
  // group with.
1548
  FocusNode? focusNode;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

  @override
  void initState() {
    super.initState();
    focusNode = FocusNode(
      canRequestFocus: false,
      skipTraversal: true,
      debugLabel: 'FocusTraversalGroup',
    );
  }

  @override
  void dispose() {
    focusNode?.dispose();
    super.dispose();
  }

  @override
  Widget build(BuildContext context) {
    return _FocusTraversalGroupMarker(
      policy: widget.policy,
1570
      focusNode: focusNode!,
1571 1572 1573 1574 1575
      child: Focus(
        focusNode: focusNode,
        canRequestFocus: false,
        skipTraversal: true,
        includeSemantics: false,
1576
        descendantsAreFocusable: widget.descendantsAreFocusable,
1577 1578 1579 1580 1581 1582 1583 1584 1585
        child: widget.child,
      ),
    );
  }
}

// A "marker" inherited widget to make the group faster to find.
class _FocusTraversalGroupMarker extends InheritedWidget {
  const _FocusTraversalGroupMarker({
1586 1587 1588
    required this.policy,
    required this.focusNode,
    required Widget child,
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
  })  : assert(policy != null),
        assert(focusNode != null),
        super(child: child);

  final FocusTraversalPolicy policy;
  final FocusNode focusNode;

  @override
  bool updateShouldNotify(InheritedWidget oldWidget) => false;
}

1600 1601 1602
/// An intent for use with the [RequestFocusAction], which supplies the
/// [FocusNode] that should be focused.
class RequestFocusIntent extends Intent {
1603 1604 1605
  /// Creates an intent used with [RequestFocusAction].
  ///
  /// The argument must not be null.
1606 1607
  const RequestFocusIntent(this.focusNode)
      : assert(focusNode != null);
1608

1609 1610
  /// The [FocusNode] that is to be focused.
  final FocusNode focusNode;
1611 1612
}

1613 1614
/// An [Action] that requests the focus on the node it is given in its
/// [RequestFocusIntent].
1615 1616 1617 1618 1619
///
/// This action can be used to request focus for a particular node, by calling
/// [Action.invoke] like so:
///
/// ```dart
1620
/// Actions.invoke(context, const RequestFocusIntent(focusNode));
1621 1622
/// ```
///
1623
/// Where the `focusNode` is the node for which the focus will be requested.
1624 1625
///
/// The difference between requesting focus in this way versus calling
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/// [FocusNode.requestFocus] directly is that it will use the [Action]
/// registered in the nearest [Actions] widget associated with
/// [RequestFocusIntent] to make the request, rather than just requesting focus
/// directly. This allows the action to have additional side effects, like
/// logging, or undo and redo functionality.
///
/// This [RequestFocusAction] class is the default action associated with the
/// [RequestFocusIntent] in the [WidgetsApp], and it simply requests focus. You
/// can redefine the associated action with your own [Actions] widget.
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
class RequestFocusAction extends Action<RequestFocusIntent> {
1638
  @override
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
  void invoke(RequestFocusIntent intent) {
    _focusAndEnsureVisible(intent.focusNode);
  }
}

/// An [Intent] bound to [NextFocusAction], which moves the focus to the next
/// focusable node in the focus traversal order.
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
class NextFocusIntent extends Intent {
1649
  /// Creates an intent that is used with [NextFocusAction].
1650
  const NextFocusIntent();
1651 1652 1653 1654 1655
}

/// An [Action] that moves the focus to the next focusable node in the focus
/// order.
///
1656 1657 1658 1659 1660
/// This action is the default action registered for the [NextFocusIntent], and
/// by default is bound to the [LogicalKeyboardKey.tab] key in the [WidgetsApp].
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
class NextFocusAction extends Action<NextFocusIntent> {
1661
  @override
1662
  void invoke(NextFocusIntent intent) {
1663
    primaryFocus!.nextFocus();
1664 1665 1666 1667 1668 1669 1670 1671
  }
}

/// An [Intent] bound to [PreviousFocusAction], which moves the focus to the
/// previous focusable node in the focus traversal order.
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
class PreviousFocusIntent extends Intent {
1672
  /// Creates an intent that is used with [PreviousFocusAction].
1673
  const PreviousFocusIntent();
1674 1675 1676 1677 1678
}

/// An [Action] that moves the focus to the previous focusable node in the focus
/// order.
///
1679 1680 1681 1682 1683 1684
/// This action is the default action registered for the [PreviousFocusIntent],
/// and by default is bound to a combination of the [LogicalKeyboardKey.tab] key
/// and the [LogicalKeyboardKey.shift] key in the [WidgetsApp].
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
class PreviousFocusAction extends Action<PreviousFocusIntent> {
1685
  @override
1686
  void invoke(PreviousFocusIntent intent) {
1687
    primaryFocus!.previousFocus();
1688
  }
1689 1690 1691 1692 1693 1694 1695 1696 1697
}

/// An [Intent] that represents moving to the next focusable node in the given
/// [direction].
///
/// This is the [Intent] bound by default to the [LogicalKeyboardKey.arrowUp],
/// [LogicalKeyboardKey.arrowDown], [LogicalKeyboardKey.arrowLeft], and
/// [LogicalKeyboardKey.arrowRight] keys in the [WidgetsApp], with the
/// appropriate associated directions.
1698 1699
///
/// See [FocusTraversalPolicy] for more information about focus traversal.
1700
class DirectionalFocusIntent extends Intent {
1701
  /// Creates an intent used to move the focus in the given [direction].
1702
  const DirectionalFocusIntent(this.direction, {this.ignoreTextFields = true})
1703
      : assert(ignoreTextFields != null);
1704 1705 1706 1707

  /// The direction in which to look for the next focusable node when the
  /// associated [DirectionalFocusAction] is invoked.
  final TraversalDirection direction;
1708 1709 1710 1711 1712 1713 1714

  /// If true, then directional focus actions that occur within a text field
  /// will not happen when the focus node which received the key is a text
  /// field.
  ///
  /// Defaults to true.
  final bool ignoreTextFields;
1715 1716
}

1717 1718
/// An [Action] that moves the focus to the focusable node in the direction
/// configured by the associated [DirectionalFocusIntent.direction].
1719
///
1720 1721
/// This is the [Action] associated with [DirectionalFocusIntent] and bound by
/// default to the [LogicalKeyboardKey.arrowUp], [LogicalKeyboardKey.arrowDown],
1722 1723
/// [LogicalKeyboardKey.arrowLeft], and [LogicalKeyboardKey.arrowRight] keys in
/// the [WidgetsApp], with the appropriate associated directions.
1724
class DirectionalFocusAction extends Action<DirectionalFocusIntent> {
1725
  @override
1726
  void invoke(DirectionalFocusIntent intent) {
1727 1728
    if (!intent.ignoreTextFields || primaryFocus!.context!.widget is! EditableText) {
      primaryFocus!.focusInDirection(intent.direction);
1729
    }
1730 1731
  }
}