1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'package:flutter/foundation.dart';
import 'package:flutter/physics.dart';
/// An implementation of scroll physics that matches iOS.
///
/// See also:
///
/// * [ClampingScrollSimulation], which implements Android scroll physics.
class BouncingScrollSimulation extends Simulation {
/// Creates a simulation group for scrolling on iOS, with the given
/// parameters.
///
/// The position and velocity arguments must use the same units as will be
/// expected from the [x] and [dx] methods respectively (typically logical
/// pixels and logical pixels per second respectively).
///
/// The leading and trailing extents must use the unit of length, the same
/// unit as used for the position argument and as expected from the [x]
/// method (typically logical pixels).
///
/// The units used with the provided [SpringDescription] must similarly be
/// consistent with the other arguments. A default set of constants is used
/// for the `spring` description if it is omitted; these defaults assume
/// that the unit of length is the logical pixel.
BouncingScrollSimulation({
@required double position,
@required double velocity,
@required this.leadingExtent,
@required this.trailingExtent,
@required this.spring,
Tolerance tolerance = Tolerance.defaultTolerance,
}) : assert(position != null),
assert(velocity != null),
assert(leadingExtent != null),
assert(trailingExtent != null),
assert(leadingExtent <= trailingExtent),
assert(spring != null),
super(tolerance: tolerance) {
if (position < leadingExtent) {
_springSimulation = _underscrollSimulation(position, velocity);
_springTime = double.negativeInfinity;
} else if (position > trailingExtent) {
_springSimulation = _overscrollSimulation(position, velocity);
_springTime = double.negativeInfinity;
} else {
_frictionSimulation = FrictionSimulation(0.135, position, velocity);
final double finalX = _frictionSimulation.finalX;
if (velocity > 0.0 && finalX > trailingExtent) {
_springTime = _frictionSimulation.timeAtX(trailingExtent);
_springSimulation = _overscrollSimulation(
trailingExtent,
math.min(_frictionSimulation.dx(_springTime), maxSpringTransferVelocity),
);
assert(_springTime.isFinite);
} else if (velocity < 0.0 && finalX < leadingExtent) {
_springTime = _frictionSimulation.timeAtX(leadingExtent);
_springSimulation = _underscrollSimulation(
leadingExtent,
math.min(_frictionSimulation.dx(_springTime), maxSpringTransferVelocity),
);
assert(_springTime.isFinite);
} else {
_springTime = double.infinity;
}
}
assert(_springTime != null);
}
/// The maximum velocity that can be transferred from the inertia of a ballistic
/// scroll into overscroll.
static const double maxSpringTransferVelocity = 5000.0;
/// When [x] falls below this value the simulation switches from an internal friction
/// model to a spring model which causes [x] to "spring" back to [leadingExtent].
final double leadingExtent;
/// When [x] exceeds this value the simulation switches from an internal friction
/// model to a spring model which causes [x] to "spring" back to [trailingExtent].
final double trailingExtent;
/// The spring used used to return [x] to either [leadingExtent] or [trailingExtent].
final SpringDescription spring;
FrictionSimulation _frictionSimulation;
Simulation _springSimulation;
double _springTime;
double _timeOffset = 0.0;
Simulation _underscrollSimulation(double x, double dx) {
return ScrollSpringSimulation(spring, x, leadingExtent, dx);
}
Simulation _overscrollSimulation(double x, double dx) {
return ScrollSpringSimulation(spring, x, trailingExtent, dx);
}
Simulation _simulation(double time) {
Simulation simulation;
if (time > _springTime) {
_timeOffset = _springTime.isFinite ? _springTime : 0.0;
simulation = _springSimulation;
} else {
_timeOffset = 0.0;
simulation = _frictionSimulation;
}
return simulation..tolerance = tolerance;
}
@override
double x(double time) => _simulation(time).x(time - _timeOffset);
@override
double dx(double time) => _simulation(time).dx(time - _timeOffset);
@override
bool isDone(double time) => _simulation(time).isDone(time - _timeOffset);
@override
String toString() {
return '$runtimeType(leadingExtent: $leadingExtent, trailingExtent: $trailingExtent)';
}
}
/// An implementation of scroll physics that matches Android.
///
/// See also:
///
/// * [BouncingScrollSimulation], which implements iOS scroll physics.
//
// This class is based on Scroller.java from Android:
// https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/widget
//
// The "See..." comments below refer to Scroller methods and values. Some
// simplifications have been made.
class ClampingScrollSimulation extends Simulation {
/// Creates a scroll physics simulation that matches Android scrolling.
ClampingScrollSimulation({
@required this.position,
@required this.velocity,
this.friction = 0.015,
Tolerance tolerance = Tolerance.defaultTolerance,
}) : assert(_flingVelocityPenetration(0.0) == _initialVelocityPenetration),
super(tolerance: tolerance) {
_duration = _flingDuration(velocity);
_distance = (velocity * _duration / _initialVelocityPenetration).abs();
}
/// The position of the particle at the beginning of the simulation.
final double position;
/// The velocity at which the particle is traveling at the beginning of the
/// simulation.
final double velocity;
/// The amount of friction the particle experiences as it travels.
///
/// The more friction the particle experiences, the sooner it stops.
final double friction;
double _duration;
double _distance;
// See DECELERATION_RATE.
static final double _kDecelerationRate = math.log(0.78) / math.log(0.9);
// See computeDeceleration().
static double _decelerationForFriction(double friction) {
return friction * 61774.04968;
}
// See getSplineFlingDuration(). Returns a value in seconds.
double _flingDuration(double velocity) {
// See mPhysicalCoeff
final double scaledFriction = friction * _decelerationForFriction(0.84);
// See getSplineDeceleration().
final double deceleration = math.log(0.35 * velocity.abs() / scaledFriction);
return math.exp(deceleration / (_kDecelerationRate - 1.0));
}
// Based on a cubic curve fit to the Scroller.computeScrollOffset() values
// produced for an initial velocity of 4000. The value of Scroller.getDuration()
// and Scroller.getFinalY() were 686ms and 961 pixels respectively.
//
// Algebra courtesy of Wolfram Alpha.
//
// f(x) = scrollOffset, x is time in milliseconds
// f(x) = 3.60882×10^-6 x^3 - 0.00668009 x^2 + 4.29427 x - 3.15307
// f(x) = 3.60882×10^-6 x^3 - 0.00668009 x^2 + 4.29427 x, so f(0) is 0
// f(686ms) = 961 pixels
// Scale to f(0 <= t <= 1.0), x = t * 686
// f(t) = 1165.03 t^3 - 3143.62 t^2 + 2945.87 t
// Scale f(t) so that 0.0 <= f(t) <= 1.0
// f(t) = (1165.03 t^3 - 3143.62 t^2 + 2945.87 t) / 961.0
// = 1.2 t^3 - 3.27 t^2 + 3.065 t
static const double _initialVelocityPenetration = 3.065;
static double _flingDistancePenetration(double t) {
return (1.2 * t * t * t) - (3.27 * t * t) + (_initialVelocityPenetration * t);
}
// The derivative of the _flingDistancePenetration() function.
static double _flingVelocityPenetration(double t) {
return (3.6 * t * t) - (6.54 * t) + _initialVelocityPenetration;
}
@override
double x(double time) {
final double t = (time / _duration).clamp(0.0, 1.0);
return position + _distance * _flingDistancePenetration(t) * velocity.sign;
}
@override
double dx(double time) {
final double t = (time / _duration).clamp(0.0, 1.0);
return _distance * _flingVelocityPenetration(t) * velocity.sign / _duration;
}
@override
bool isDone(double time) {
return time >= _duration;
}
}