1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'dart:ui' as ui show lerpDouble;
import 'package:flutter/foundation.dart';
import 'basic_types.dart';
import 'edge_insets.dart';
/// The style of line to draw for a [BorderSide] in a [Border].
enum BorderStyle {
/// Skip the border.
none,
/// Draw the border as a solid line.
solid,
// if you add more, think about how they will lerp
}
/// A side of a border of a box.
///
/// A [Border] consists of four [BorderSide] objects: [Border.top],
/// [Border.left], [Border.right], and [Border.bottom].
///
/// Note that setting [BorderSide.width] to 0.0 will result in hairline
/// rendering. A more involved explanation is present in [BorderSide.width].
///
/// {@tool snippet}
/// This sample shows how [BorderSide] objects can be used in a [Container], via
/// a [BoxDecoration] and a [Border], to decorate some [Text]. In this example,
/// the text has a thick bar above it that is light blue, and a thick bar below
/// it that is a darker shade of blue.
///
/// ```dart
/// Container(
/// padding: const EdgeInsets.all(8.0),
/// decoration: BoxDecoration(
/// border: Border(
/// top: BorderSide(width: 16.0, color: Colors.lightBlue.shade50),
/// bottom: BorderSide(width: 16.0, color: Colors.lightBlue.shade900),
/// ),
/// ),
/// child: const Text('Flutter in the sky', textAlign: TextAlign.center),
/// )
/// ```
/// {@end-tool}
///
/// See also:
///
/// * [Border], which uses [BorderSide] objects to represent its sides.
/// * [BoxDecoration], which optionally takes a [Border] object.
/// * [TableBorder], which is similar to [Border] but has two more sides
/// ([TableBorder.horizontalInside] and [TableBorder.verticalInside]), both
/// of which are also [BorderSide] objects.
@immutable
class BorderSide with Diagnosticable {
/// Creates the side of a border.
///
/// By default, the border is 1.0 logical pixels wide and solid black.
const BorderSide({
this.color = const Color(0xFF000000),
this.width = 1.0,
this.style = BorderStyle.solid,
this.strokeAlign = strokeAlignInside,
}) : assert(color != null),
assert(width != null),
assert(width >= 0.0),
assert(style != null),
assert(strokeAlign != null);
/// Creates a [BorderSide] that represents the addition of the two given
/// [BorderSide]s.
///
/// It is only valid to call this if [canMerge] returns true for the two
/// sides.
///
/// If one of the sides is zero-width with [BorderStyle.none], then the other
/// side is return as-is. If both of the sides are zero-width with
/// [BorderStyle.none], then [BorderSide.none] is returned.
///
/// The arguments must not be null.
static BorderSide merge(BorderSide a, BorderSide b) {
assert(a != null);
assert(b != null);
assert(canMerge(a, b));
final bool aIsNone = a.style == BorderStyle.none && a.width == 0.0;
final bool bIsNone = b.style == BorderStyle.none && b.width == 0.0;
if (aIsNone && bIsNone) {
return BorderSide.none;
}
if (aIsNone) {
return b;
}
if (bIsNone) {
return a;
}
assert(a.color == b.color);
assert(a.style == b.style);
return BorderSide(
color: a.color, // == b.color
width: a.width + b.width,
strokeAlign: math.max(a.strokeAlign, b.strokeAlign),
style: a.style, // == b.style
);
}
/// The color of this side of the border.
final Color color;
/// The width of this side of the border, in logical pixels.
///
/// Setting width to 0.0 will result in a hairline border. This means that
/// the border will have the width of one physical pixel. Also, hairline
/// rendering takes shortcuts when the path overlaps a pixel more than once.
/// This means that it will render faster than otherwise, but it might
/// double-hit pixels, giving it a slightly darker/lighter result.
///
/// To omit the border entirely, set the [style] to [BorderStyle.none].
final double width;
/// The style of this side of the border.
///
/// To omit a side, set [style] to [BorderStyle.none]. This skips
/// painting the border, but the border still has a [width].
final BorderStyle style;
/// A hairline black border that is not rendered.
static const BorderSide none = BorderSide(width: 0.0, style: BorderStyle.none);
/// The relative position of the stroke on a [BorderSide] in an
/// [OutlinedBorder] or [Border].
///
/// Values typically range from -1.0 ([strokeAlignInside], inside border,
/// default) to 1.0 ([strokeAlignOutside], outside border), without any
/// bound constraints (e.g., a value of -2.0 is is not typical, but allowed).
/// A value of 0 ([strokeAlignCenter]) will center the border on the edge
/// of the widget.
///
/// When set to [strokeAlignInside], the stroke is drawn completely inside
/// the widget. For [strokeAlignCenter] and [strokeAlignOutside], a property
/// such as [Container.clipBehavior] can be used in an outside widget to clip
/// it. If [Container.decoration] has a border, the container may incorporate
/// [width] as additional padding:
/// - [strokeAlignInside] provides padding with full [width].
/// - [strokeAlignCenter] provides padding with half [width].
/// - [strokeAlignOutside] provides zero padding, as stroke is drawn entirely outside.
///
/// {@tool dartpad}
/// This example shows an animation of how [strokeAlign] affects the drawing
/// when applied to borders of various shapes.
///
/// ** See code in examples/api/lib/painting/borders/border_side.stroke_align.0.dart **
/// {@end-tool}
final double strokeAlign;
/// The border is drawn fully inside of the border path.
///
/// This is the default.
static const double strokeAlignInside = -1.0;
/// The border is drawn on the center of the border path, with half of the
/// [BorderSide.width] on the inside, and the other half on the outside of
/// the path.
static const double strokeAlignCenter = 0.0;
/// The border is drawn on the outside of the border path.
static const double strokeAlignOutside = 1.0;
/// Creates a copy of this border but with the given fields replaced with the new values.
BorderSide copyWith({
Color? color,
double? width,
BorderStyle? style,
double? strokeAlign,
}) {
return BorderSide(
color: color ?? this.color,
width: width ?? this.width,
style: style ?? this.style,
strokeAlign: strokeAlign ?? this.strokeAlign,
);
}
/// Creates a copy of this border side description but with the width scaled
/// by the factor `t`.
///
/// The `t` argument represents the multiplicand, or the position on the
/// timeline for an interpolation from nothing to `this`, with 0.0 meaning
/// that the object returned should be the nil variant of this object, 1.0
/// meaning that no change should be applied, returning `this` (or something
/// equivalent to `this`), and other values meaning that the object should be
/// multiplied by `t`. Negative values are treated like zero.
///
/// Since a zero width is normally painted as a hairline width rather than no
/// border at all, the zero factor is special-cased to instead change the
/// style to [BorderStyle.none].
///
/// Values for `t` are usually obtained from an [Animation<double>], such as
/// an [AnimationController].
BorderSide scale(double t) {
assert(t != null);
return BorderSide(
color: color,
width: math.max(0.0, width * t),
style: t <= 0.0 ? BorderStyle.none : style,
);
}
/// Create a [Paint] object that, if used to stroke a line, will draw the line
/// in this border's style.
///
/// Not all borders use this method to paint their border sides. For example,
/// non-uniform rectangular [Border]s have beveled edges and so paint their
/// border sides as filled shapes rather than using a stroke.
Paint toPaint() {
switch (style) {
case BorderStyle.solid:
return Paint()
..color = color
..strokeWidth = width
..style = PaintingStyle.stroke;
case BorderStyle.none:
return Paint()
..color = const Color(0x00000000)
..strokeWidth = 0.0
..style = PaintingStyle.stroke;
}
}
/// Whether the two given [BorderSide]s can be merged using
/// [BorderSide.merge].
///
/// Two sides can be merged if one or both are zero-width with
/// [BorderStyle.none], or if they both have the same color and style.
///
/// The arguments must not be null.
static bool canMerge(BorderSide a, BorderSide b) {
assert(a != null);
assert(b != null);
if ((a.style == BorderStyle.none && a.width == 0.0) ||
(b.style == BorderStyle.none && b.width == 0.0)) {
return true;
}
return a.style == b.style
&& a.color == b.color;
}
/// Linearly interpolate between two border sides.
///
/// The arguments must not be null.
///
/// {@macro dart.ui.shadow.lerp}
static BorderSide lerp(BorderSide a, BorderSide b, double t) {
assert(a != null);
assert(b != null);
assert(t != null);
if (t == 0.0) {
return a;
}
if (t == 1.0) {
return b;
}
final double width = ui.lerpDouble(a.width, b.width, t)!;
if (width < 0.0) {
return BorderSide.none;
}
if (a.style == b.style && a.strokeAlign == b.strokeAlign) {
return BorderSide(
color: Color.lerp(a.color, b.color, t)!,
width: width,
style: a.style, // == b.style
strokeAlign: a.strokeAlign, // == b.strokeAlign
);
}
final Color colorA, colorB;
switch (a.style) {
case BorderStyle.solid:
colorA = a.color;
break;
case BorderStyle.none:
colorA = a.color.withAlpha(0x00);
break;
}
switch (b.style) {
case BorderStyle.solid:
colorB = b.color;
break;
case BorderStyle.none:
colorB = b.color.withAlpha(0x00);
break;
}
if (a.strokeAlign != b.strokeAlign) {
return BorderSide(
color: Color.lerp(colorA, colorB, t)!,
width: width,
strokeAlign: ui.lerpDouble(a.strokeAlign, b.strokeAlign, t)!,
);
}
return BorderSide(
color: Color.lerp(colorA, colorB, t)!,
width: width,
strokeAlign: a.strokeAlign, // == b.strokeAlign
);
}
/// Get the amount of the stroke width that lies inside of the [BorderSide].
///
/// For example, this will return the [width] for a [strokeAlign] of -1, half
/// the [width] for a [strokeAlign] of 0, and 0 for a [strokeAlign] of 1.
double get strokeInset => width * (1 - (1 + strokeAlign) / 2);
/// Get the amount of the stroke width that lies outside of the [BorderSide].
///
/// For example, this will return 0 for a [strokeAlign] of -1, half the
/// [width] for a [strokeAlign] of 0, and the [width] for a [strokeAlign]
/// of 1.
double get strokeOutset => width * (1 + strokeAlign) / 2;
/// The offset of the stroke, taking into account the stroke alignment.
///
/// For example, this will return the negative [width] of the stroke
/// for a [strokeAlign] of -1, 0 for a [strokeAlign] of 0, and the
/// [width] for a [strokeAlign] of -1.
double get strokeOffset => width * strokeAlign;
@override
bool operator ==(Object other) {
if (identical(this, other)) {
return true;
}
if (other.runtimeType != runtimeType) {
return false;
}
return other is BorderSide
&& other.color == color
&& other.width == width
&& other.style == style
&& other.strokeAlign == strokeAlign;
}
@override
int get hashCode => Object.hash(color, width, style, strokeAlign);
@override
String toStringShort() => 'BorderSide';
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<Color>('color', color, defaultValue: const Color(0xFF000000)));
properties.add(DoubleProperty('width', width, defaultValue: 1.0));
properties.add(DoubleProperty('strokeAlign', strokeAlign, defaultValue: strokeAlignInside));
properties.add(EnumProperty<BorderStyle>('style', style, defaultValue: BorderStyle.solid));
}
}
/// Base class for shape outlines.
///
/// This class handles how to add multiple borders together. Subclasses define
/// various shapes, like circles ([CircleBorder]), rounded rectangles
/// ([RoundedRectangleBorder]), continuous rectangles
/// ([ContinuousRectangleBorder]), or beveled rectangles
/// ([BeveledRectangleBorder]).
///
/// See also:
///
/// * [ShapeDecoration], which can be used with [DecoratedBox] to show a shape.
/// * [Material] (and many other widgets in the Material library), which takes
/// a [ShapeBorder] to define its shape.
/// * [NotchedShape], which describes a shape with a hole in it.
@immutable
abstract class ShapeBorder {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const ShapeBorder();
/// The widths of the sides of this border represented as an [EdgeInsets].
///
/// Specifically, this is the amount by which a rectangle should be inset so
/// as to avoid painting over any important part of the border. It is the
/// amount by which additional borders will be inset before they are drawn.
///
/// This can be used, for example, with a [Padding] widget to inset a box by
/// the size of these borders.
///
/// Shapes that have a fixed ratio regardless of the area on which they are
/// painted, or that change their rendering based on the size they are given
/// when painting (for instance [CircleBorder]), will not return valid
/// [dimensions] information because they cannot know their eventual size when
/// computing their [dimensions].
EdgeInsetsGeometry get dimensions;
/// Attempts to create a new object that represents the amalgamation of `this`
/// border and the `other` border.
///
/// If the type of the other border isn't known, or the given instance cannot
/// be reasonably added to this instance, then this should return null.
///
/// This method is used by the [operator +] implementation.
///
/// The `reversed` argument is true if this object was the right operand of
/// the `+` operator, and false if it was the left operand.
@protected
ShapeBorder? add(ShapeBorder other, { bool reversed = false }) => null;
/// Creates a new border consisting of the two borders on either side of the
/// operator.
///
/// If the borders belong to classes that know how to add themselves, then
/// this results in a new border that represents the intelligent addition of
/// those two borders (see [add]). Otherwise, an object is returned that
/// merely paints the two borders sequentially, with the left hand operand on
/// the inside and the right hand operand on the outside.
ShapeBorder operator +(ShapeBorder other) {
return add(other) ?? other.add(this, reversed: true) ?? _CompoundBorder(<ShapeBorder>[other, this]);
}
/// Creates a copy of this border, scaled by the factor `t`.
///
/// Typically this means scaling the width of the border's side, but it can
/// also include scaling other artifacts of the border, e.g. the border radius
/// of a [RoundedRectangleBorder].
///
/// The `t` argument represents the multiplicand, or the position on the
/// timeline for an interpolation from nothing to `this`, with 0.0 meaning
/// that the object returned should be the nil variant of this object, 1.0
/// meaning that no change should be applied, returning `this` (or something
/// equivalent to `this`), and other values meaning that the object should be
/// multiplied by `t`. Negative values are allowed but may be meaningless
/// (they correspond to extrapolating the interpolation from this object to
/// nothing, and going beyond nothing)
///
/// Values for `t` are usually obtained from an [Animation<double>], such as
/// an [AnimationController].
///
/// See also:
///
/// * [BorderSide.scale], which most [ShapeBorder] subclasses defer to for
/// the actual computation.
ShapeBorder scale(double t);
/// Linearly interpolates from another [ShapeBorder] (possibly of another
/// class) to `this`.
///
/// When implementing this method in subclasses, return null if this class
/// cannot interpolate from `a`. In that case, [lerp] will try `a`'s [lerpTo]
/// method instead. If `a` is null, this must not return null.
///
/// The base class implementation handles the case of `a` being null by
/// deferring to [scale].
///
/// The `t` argument represents position on the timeline, with 0.0 meaning
/// that the interpolation has not started, returning `a` (or something
/// equivalent to `a`), 1.0 meaning that the interpolation has finished,
/// returning `this` (or something equivalent to `this`), and values in
/// between meaning that the interpolation is at the relevant point on the
/// timeline between `a` and `this`. The interpolation can be extrapolated
/// beyond 0.0 and 1.0, so negative values and values greater than 1.0 are
/// valid (and can easily be generated by curves such as
/// [Curves.elasticInOut]).
///
/// Values for `t` are usually obtained from an [Animation<double>], such as
/// an [AnimationController].
///
/// Instead of calling this directly, use [ShapeBorder.lerp].
@protected
ShapeBorder? lerpFrom(ShapeBorder? a, double t) {
if (a == null) {
return scale(t);
}
return null;
}
/// Linearly interpolates from `this` to another [ShapeBorder] (possibly of
/// another class).
///
/// This is called if `b`'s [lerpTo] did not know how to handle this class.
///
/// When implementing this method in subclasses, return null if this class
/// cannot interpolate from `b`. In that case, [lerp] will apply a default
/// behavior instead. If `b` is null, this must not return null.
///
/// The base class implementation handles the case of `b` being null by
/// deferring to [scale].
///
/// The `t` argument represents position on the timeline, with 0.0 meaning
/// that the interpolation has not started, returning `this` (or something
/// equivalent to `this`), 1.0 meaning that the interpolation has finished,
/// returning `b` (or something equivalent to `b`), and values in between
/// meaning that the interpolation is at the relevant point on the timeline
/// between `this` and `b`. The interpolation can be extrapolated beyond 0.0
/// and 1.0, so negative values and values greater than 1.0 are valid (and can
/// easily be generated by curves such as [Curves.elasticInOut]).
///
/// Values for `t` are usually obtained from an [Animation<double>], such as
/// an [AnimationController].
///
/// Instead of calling this directly, use [ShapeBorder.lerp].
@protected
ShapeBorder? lerpTo(ShapeBorder? b, double t) {
if (b == null) {
return scale(1.0 - t);
}
return null;
}
/// Linearly interpolates between two [ShapeBorder]s.
///
/// This defers to `b`'s [lerpTo] function if `b` is not null. If `b` is
/// null or if its [lerpTo] returns null, it uses `a`'s [lerpFrom]
/// function instead. If both return null, it returns `a` before `t=0.5`
/// and `b` after `t=0.5`.
///
/// {@macro dart.ui.shadow.lerp}
static ShapeBorder? lerp(ShapeBorder? a, ShapeBorder? b, double t) {
assert(t != null);
ShapeBorder? result;
if (b != null) {
result = b.lerpFrom(a, t);
}
if (result == null && a != null) {
result = a.lerpTo(b, t);
}
return result ?? (t < 0.5 ? a : b);
}
/// Create a [Path] that describes the outer edge of the border.
///
/// This path must not cross the path given by [getInnerPath] for the same
/// [Rect].
///
/// To obtain a [Path] that describes the area of the border itself, set the
/// [Path.fillType] of the returned object to [PathFillType.evenOdd], and add
/// to this object the path returned from [getInnerPath] (using
/// [Path.addPath]).
///
/// The `textDirection` argument must be provided non-null if the border
/// has a text direction dependency (for example if it is expressed in terms
/// of "start" and "end" instead of "left" and "right"). It may be null if
/// the border will not need the text direction to paint itself.
///
/// See also:
///
/// * [getInnerPath], which creates the path for the inner edge.
/// * [Path.contains], which can tell if an [Offset] is within a [Path].
Path getOuterPath(Rect rect, { TextDirection? textDirection });
/// Create a [Path] that describes the inner edge of the border.
///
/// This path must not cross the path given by [getOuterPath] for the same
/// [Rect].
///
/// To obtain a [Path] that describes the area of the border itself, set the
/// [Path.fillType] of the returned object to [PathFillType.evenOdd], and add
/// to this object the path returned from [getOuterPath] (using
/// [Path.addPath]).
///
/// The `textDirection` argument must be provided and non-null if the border
/// has a text direction dependency (for example if it is expressed in terms
/// of "start" and "end" instead of "left" and "right"). It may be null if
/// the border will not need the text direction to paint itself.
///
/// See also:
///
/// * [getOuterPath], which creates the path for the outer edge.
/// * [Path.contains], which can tell if an [Offset] is within a [Path].
Path getInnerPath(Rect rect, { TextDirection? textDirection });
/// Paint a canvas with the appropriate shape.
///
/// On [ShapeBorder] subclasses whose [preferPaintInterior] method returns
/// true, this should be faster than using [Canvas.drawPath] with the path
/// provided by [getOuterPath]. (If [preferPaintInterior] returns false,
/// then this method asserts in debug mode and does nothing in release mode.)
///
/// Subclasses are expected to implement this method when the [Canvas] API
/// has a dedicated method to draw the relevant shape. For example,
/// [CircleBorder] uses this to call [Canvas.drawCircle], and
/// [RoundedRectangleBorder] uses this to call [Canvas.drawRRect].
///
/// Subclasses that implement this must ensure that calling [paintInterior]
/// is semantically equivalent to (i.e. renders the same pixels as) calling
/// [Canvas.drawPath] with the same [Paint] and the [Path] returned from
/// [getOuterPath], and must also override [preferPaintInterior] to
/// return true.
///
/// For example, a shape that draws a rectangle might implement
/// [getOuterPath], [paintInterior], and [preferPaintInterior] as follows:
///
/// ```dart
/// class RectangleBorder extends OutlinedBorder {
/// // ...
///
/// @override
/// Path getOuterPath(Rect rect, { TextDirection? textDirection }) {
/// return Path()
/// ..addRect(rect);
/// }
///
/// @override
/// void paintInterior(Canvas canvas, Rect rect, Paint paint, {TextDirection? textDirection}) {
/// canvas.drawRect(rect, paint);
/// }
///
/// @override
/// bool get preferPaintInterior => true;
///
/// // ...
/// }
/// ```
///
/// When a shape can only be drawn using path, [preferPaintInterior] must
/// return false. In that case, classes such as [ShapeDecoration] will cache
/// the path from [getOuterPath] and call [Canvas.drawPath] directly.
void paintInterior(Canvas canvas, Rect rect, Paint paint, {TextDirection? textDirection}) {
assert(!preferPaintInterior, '$runtimeType.preferPaintInterior returns true but $runtimeType.paintInterior is not implemented.');
assert(false, '$runtimeType.preferPaintInterior returns false, so it is an error to call its paintInterior method.');
}
/// Reports whether [paintInterior] is implemented.
///
/// Classes such as [ShapeDecoration] prefer to use [paintInterior] if this
/// getter returns true. This is intended to enable faster painting; instead
/// of computing a shape using [getOuterPath] and then drawing it using
/// [Canvas.drawPath], the path can be drawn directly to the [Canvas] using
/// dedicated methods such as [Canvas.drawRect] or [Canvas.drawCircle].
///
/// By default, this getter returns false.
///
/// Subclasses that implement [paintInterior] should override this to return
/// true. Subclasses should only override [paintInterior] if doing so enables
/// faster rendering than is possible with [Canvas.drawPath] (so, in
/// particular, subclasses should not call [Canvas.drawPath] in
/// [paintInterior]).
///
/// See also:
///
/// * [paintInterior], whose API documentation has an example implementation.
bool get preferPaintInterior => false;
/// Paints the border within the given [Rect] on the given [Canvas].
///
/// The `textDirection` argument must be provided and non-null if the border
/// has a text direction dependency (for example if it is expressed in terms
/// of "start" and "end" instead of "left" and "right"). It may be null if
/// the border will not need the text direction to paint itself.
void paint(Canvas canvas, Rect rect, { TextDirection? textDirection });
@override
String toString() {
return '${objectRuntimeType(this, 'ShapeBorder')}()';
}
}
/// A ShapeBorder that draws an outline with the width and color specified
/// by [side].
@immutable
abstract class OutlinedBorder extends ShapeBorder {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
///
/// The value of [side] must not be null.
const OutlinedBorder({ this.side = BorderSide.none }) : assert(side != null);
@override
EdgeInsetsGeometry get dimensions => EdgeInsets.all(math.max(side.strokeInset, 0));
/// The border outline's color and weight.
///
/// If [side] is [BorderSide.none], which is the default, an outline is not drawn.
/// Otherwise the outline is centered over the shape's boundary.
final BorderSide side;
/// Returns a copy of this OutlinedBorder that draws its outline with the
/// specified [side], if [side] is non-null.
OutlinedBorder copyWith({ BorderSide? side });
@override
ShapeBorder scale(double t);
@override
ShapeBorder? lerpFrom(ShapeBorder? a, double t) {
if (a == null) {
return scale(t);
}
return null;
}
@override
ShapeBorder? lerpTo(ShapeBorder? b, double t) {
if (b == null) {
return scale(1.0 - t);
}
return null;
}
/// Linearly interpolates between two [OutlinedBorder]s.
///
/// This defers to `b`'s [lerpTo] function if `b` is not null. If `b` is
/// null or if its [lerpTo] returns null, it uses `a`'s [lerpFrom]
/// function instead. If both return null, it returns `a` before `t=0.5`
/// and `b` after `t=0.5`.
///
/// {@macro dart.ui.shadow.lerp}
static OutlinedBorder? lerp(OutlinedBorder? a, OutlinedBorder? b, double t) {
assert(t != null);
ShapeBorder? result;
if (b != null) {
result = b.lerpFrom(a, t);
}
if (result == null && a != null) {
result = a.lerpTo(b, t);
}
return result as OutlinedBorder? ?? (t < 0.5 ? a : b);
}
}
/// Represents the addition of two otherwise-incompatible borders.
///
/// The borders are listed from the outside to the inside.
class _CompoundBorder extends ShapeBorder {
_CompoundBorder(this.borders)
: assert(borders != null),
assert(borders.length >= 2),
assert(!borders.any((ShapeBorder border) => border is _CompoundBorder));
final List<ShapeBorder> borders;
@override
EdgeInsetsGeometry get dimensions {
return borders.fold<EdgeInsetsGeometry>(
EdgeInsets.zero,
(EdgeInsetsGeometry previousValue, ShapeBorder border) {
return previousValue.add(border.dimensions);
},
);
}
@override
ShapeBorder add(ShapeBorder other, { bool reversed = false }) {
// This wraps the list of borders with "other", or, if "reversed" is true,
// wraps "other" with the list of borders.
// If "reversed" is false, "other" should end up being at the start of the
// list, otherwise, if "reversed" is true, it should end up at the end.
// First, see if we can merge the new adjacent borders.
if (other is! _CompoundBorder) {
// Here, "ours" is the border at the side where we're adding the new
// border, and "merged" is the result of attempting to merge it with the
// new border. If it's null, it couldn't be merged.
final ShapeBorder ours = reversed ? borders.last : borders.first;
final ShapeBorder? merged = ours.add(other, reversed: reversed)
?? other.add(ours, reversed: !reversed);
if (merged != null) {
final List<ShapeBorder> result = <ShapeBorder>[...borders];
result[reversed ? result.length - 1 : 0] = merged;
return _CompoundBorder(result);
}
}
// We can't, so fall back to just adding the new border to the list.
final List<ShapeBorder> mergedBorders = <ShapeBorder>[
if (reversed) ...borders,
if (other is _CompoundBorder) ...other.borders
else other,
if (!reversed) ...borders,
];
return _CompoundBorder(mergedBorders);
}
@override
ShapeBorder scale(double t) {
return _CompoundBorder(
borders.map<ShapeBorder>((ShapeBorder border) => border.scale(t)).toList(),
);
}
@override
ShapeBorder? lerpFrom(ShapeBorder? a, double t) {
return _CompoundBorder.lerp(a, this, t);
}
@override
ShapeBorder? lerpTo(ShapeBorder? b, double t) {
return _CompoundBorder.lerp(this, b, t);
}
static _CompoundBorder lerp(ShapeBorder? a, ShapeBorder? b, double t) {
assert(t != null);
assert(a is _CompoundBorder || b is _CompoundBorder); // Not really necessary, but all call sites currently intend this.
final List<ShapeBorder?> aList = a is _CompoundBorder ? a.borders : <ShapeBorder?>[a];
final List<ShapeBorder?> bList = b is _CompoundBorder ? b.borders : <ShapeBorder?>[b];
final List<ShapeBorder> results = <ShapeBorder>[];
final int length = math.max(aList.length, bList.length);
for (int index = 0; index < length; index += 1) {
final ShapeBorder? localA = index < aList.length ? aList[index] : null;
final ShapeBorder? localB = index < bList.length ? bList[index] : null;
if (localA != null && localB != null) {
final ShapeBorder? localResult = localA.lerpTo(localB, t) ?? localB.lerpFrom(localA, t);
if (localResult != null) {
results.add(localResult);
continue;
}
}
// If we're changing from one shape to another, make sure the shape that is coming in
// is inserted before the shape that is going away, so that the outer path changes to
// the new border earlier rather than later. (This affects, among other things, where
// the ShapeDecoration class puts its background.)
if (localB != null) {
results.add(localB.scale(t));
}
if (localA != null) {
results.add(localA.scale(1.0 - t));
}
}
return _CompoundBorder(results);
}
@override
Path getInnerPath(Rect rect, { TextDirection? textDirection }) {
for (int index = 0; index < borders.length - 1; index += 1) {
rect = borders[index].dimensions.resolve(textDirection).deflateRect(rect);
}
return borders.last.getInnerPath(rect, textDirection: textDirection);
}
@override
Path getOuterPath(Rect rect, { TextDirection? textDirection }) {
return borders.first.getOuterPath(rect, textDirection: textDirection);
}
@override
void paintInterior(Canvas canvas, Rect rect, Paint paint, { TextDirection? textDirection }) {
borders.first.paintInterior(canvas, rect, paint, textDirection: textDirection);
}
@override
bool get preferPaintInterior => true;
@override
void paint(Canvas canvas, Rect rect, { TextDirection? textDirection }) {
for (final ShapeBorder border in borders) {
border.paint(canvas, rect, textDirection: textDirection);
rect = border.dimensions.resolve(textDirection).deflateRect(rect);
}
}
@override
bool operator ==(Object other) {
if (identical(this, other)) {
return true;
}
if (other.runtimeType != runtimeType) {
return false;
}
return other is _CompoundBorder
&& listEquals<ShapeBorder>(other.borders, borders);
}
@override
int get hashCode => Object.hashAll(borders);
@override
String toString() {
// We list them in reverse order because when adding two borders they end up
// in the list in the opposite order of what the source looks like: a + b =>
// [b, a]. We do this to make the painting code more optimal, and most of
// the rest of the code doesn't care, except toString() (for debugging).
return borders.reversed.map<String>((ShapeBorder border) => border.toString()).join(' + ');
}
}
/// Paints a border around the given rectangle on the canvas.
///
/// The four sides can be independently specified. They are painted in the order
/// top, right, bottom, left. This is only notable if the widths of the borders
/// and the size of the given rectangle are such that the border sides will
/// overlap each other. No effort is made to optimize the rendering of uniform
/// borders (where all the borders have the same configuration); to render a
/// uniform border, consider using [Canvas.drawRect] directly.
///
/// The arguments must not be null.
///
/// See also:
///
/// * [paintImage], which paints an image in a rectangle on a canvas.
/// * [Border], which uses this function to paint its border when the border is
/// not uniform.
/// * [BoxDecoration], which describes its border using the [Border] class.
void paintBorder(
Canvas canvas,
Rect rect, {
BorderSide top = BorderSide.none,
BorderSide right = BorderSide.none,
BorderSide bottom = BorderSide.none,
BorderSide left = BorderSide.none,
}) {
assert(canvas != null);
assert(rect != null);
assert(top != null);
assert(right != null);
assert(bottom != null);
assert(left != null);
// We draw the borders as filled shapes, unless the borders are hairline
// borders, in which case we use PaintingStyle.stroke, with the stroke width
// specified here.
final Paint paint = Paint()
..strokeWidth = 0.0;
final Path path = Path();
switch (top.style) {
case BorderStyle.solid:
paint.color = top.color;
path.reset();
path.moveTo(rect.left, rect.top);
path.lineTo(rect.right, rect.top);
if (top.width == 0.0) {
paint.style = PaintingStyle.stroke;
} else {
paint.style = PaintingStyle.fill;
path.lineTo(rect.right - right.width, rect.top + top.width);
path.lineTo(rect.left + left.width, rect.top + top.width);
}
canvas.drawPath(path, paint);
break;
case BorderStyle.none:
break;
}
switch (right.style) {
case BorderStyle.solid:
paint.color = right.color;
path.reset();
path.moveTo(rect.right, rect.top);
path.lineTo(rect.right, rect.bottom);
if (right.width == 0.0) {
paint.style = PaintingStyle.stroke;
} else {
paint.style = PaintingStyle.fill;
path.lineTo(rect.right - right.width, rect.bottom - bottom.width);
path.lineTo(rect.right - right.width, rect.top + top.width);
}
canvas.drawPath(path, paint);
break;
case BorderStyle.none:
break;
}
switch (bottom.style) {
case BorderStyle.solid:
paint.color = bottom.color;
path.reset();
path.moveTo(rect.right, rect.bottom);
path.lineTo(rect.left, rect.bottom);
if (bottom.width == 0.0) {
paint.style = PaintingStyle.stroke;
} else {
paint.style = PaintingStyle.fill;
path.lineTo(rect.left + left.width, rect.bottom - bottom.width);
path.lineTo(rect.right - right.width, rect.bottom - bottom.width);
}
canvas.drawPath(path, paint);
break;
case BorderStyle.none:
break;
}
switch (left.style) {
case BorderStyle.solid:
paint.color = left.color;
path.reset();
path.moveTo(rect.left, rect.bottom);
path.lineTo(rect.left, rect.top);
if (left.width == 0.0) {
paint.style = PaintingStyle.stroke;
} else {
paint.style = PaintingStyle.fill;
path.lineTo(rect.left + left.width, rect.top + top.width);
path.lineTo(rect.left + left.width, rect.bottom - bottom.width);
}
canvas.drawPath(path, paint);
break;
case BorderStyle.none:
break;
}
}