1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:ui' show Color, Size, Rect, hashValues;
import 'package:flutter/foundation.dart';
import 'animation.dart';
import 'animations.dart';
import 'curves.dart';
/// An object that can produce a value of type `T` given an [Animation<double>]
/// as input.
///
/// Typically, the values of the input animation are nominally in the range 0.0
/// to 1.0. In principle, however, any value could be provided.
abstract class Animatable<T> {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const Animatable();
/// The current value of this object for the given animation.
T evaluate(Animation<double> animation);
/// Returns a new Animation that is driven by the given animation but that
/// takes on values determined by this object.
Animation<T> animate(Animation<double> parent) {
return new _AnimatedEvaluation<T>(parent, this);
}
/// Returns a new Animatable whose value is determined by first evaluating
/// the given parent and then evaluating this object.
Animatable<T> chain(Animatable<double> parent) {
return new _ChainedEvaluation<T>(parent, this);
}
}
class _AnimatedEvaluation<T> extends Animation<T> with AnimationWithParentMixin<double> {
_AnimatedEvaluation(this.parent, this._evaluatable);
@override
final Animation<double> parent;
final Animatable<T> _evaluatable;
@override
T get value => _evaluatable.evaluate(parent);
@override
String toString() {
return '$parent\u27A9$_evaluatable\u27A9$value';
}
@override
String toStringDetails() {
return '${super.toStringDetails()} $_evaluatable';
}
}
class _ChainedEvaluation<T> extends Animatable<T> {
_ChainedEvaluation(this._parent, this._evaluatable);
final Animatable<double> _parent;
final Animatable<T> _evaluatable;
@override
T evaluate(Animation<double> animation) {
final double value = _parent.evaluate(animation);
return _evaluatable.evaluate(new AlwaysStoppedAnimation<double>(value));
}
@override
String toString() {
return '$_parent\u27A9$_evaluatable';
}
}
/// A linear interpolation between a beginning and ending value.
///
/// [Tween] is useful if you want to interpolate across a range.
///
/// To use a [Tween] object with an animation, call the [Tween] object's
/// [animate] method and pass it the [Animation] object that you want to
/// modify.
///
/// You can chain [Tween] objects together using the [chain] method, so that a
/// single [Animation] object is configured by multiple [Tween] objects called
/// in succession. This is different than calling the [animate] method twice,
/// which results in two [Animation] separate objects, each configured with a
/// single [Tween].
///
/// ## Sample code
///
/// Suppose `_controller` is an [AnimationController], and we want to create an
/// [Animation<Offset>] that is controlled by that controller, and save it in
/// `_animation`:
///
/// ```dart
/// Animation<Offset> _animation = new Tween<Offset>(
/// begin: const Offset(100.0, 50.0),
/// end: const Offset(200.0, 300.0),
/// ).animate(_controller);
/// ```
///
/// That would provide an `_animation` that, over the lifetime of the
/// `_controller`'s animation, returns a value that depicts a point along the
/// line between the two offsets above. If we used a [MaterialPointArcTween]
/// instead of a [Tween<Offset>] in the code above, the points would follow a
/// pleasing curve instead of a straight line, with no other changes necessary.
class Tween<T extends dynamic> extends Animatable<T> {
/// Creates a tween.
///
/// The [begin] and [end] properties must be non-null before the tween is
/// first used, but the arguments can be null if the values are going to be
/// filled in later.
Tween({ this.begin, this.end });
/// The value this variable has at the beginning of the animation.
///
/// See the constructor for details about whether this property may be null
/// (it varies from subclass to subclass).
T begin;
/// The value this variable has at the end of the animation.
///
/// See the constructor for details about whether this property may be null
/// (it varies from subclass to subclass).
T end;
/// Returns the value this variable has at the given animation clock value.
///
/// The default implementation of this method uses the [+], [-], and [*]
/// operators on `T`. The [begin] and [end] properties must therefore be
/// non-null by the time this method is called.
T lerp(double t) {
assert(begin != null);
assert(end != null);
return begin + (end - begin) * t;
}
/// Returns the interpolated value for the current value of the given animation.
///
/// This method returns `begin` and `end` when the animation values are 0.0 or
/// 1.0, respectively.
///
/// This function is implemented by deferring to [lerp]. Subclasses that want to
/// provide custom behavior should override [lerp], not [evaluate].
///
/// See the constructor for details about whether the [begin] and [end]
/// properties may be null when this is called. It varies from subclass to
/// subclass.
@override
T evaluate(Animation<double> animation) {
final double t = animation.value;
if (t == 0.0)
return begin;
if (t == 1.0)
return end;
return lerp(t);
}
@override
bool operator ==(dynamic other) {
if (identical(this, other))
return true;
if (other.runtimeType != runtimeType)
return false;
final Tween<T> typedOther = other;
return begin == typedOther.begin
&& end == typedOther.end;
}
@override
int get hashCode => hashValues(begin, end);
@override
String toString() => '$runtimeType($begin \u2192 $end)';
}
/// A [Tween] that evaluates its [parent] in reverse.
class ReverseTween<T> extends Tween<T> {
/// Construct a [Tween] that evaluates its [parent] in reverse.
ReverseTween(this.parent) : assert(parent != null), super(begin: parent.end, end: parent.begin);
/// This tween's value is the same as the parent's value evaluated in reverse.
///
/// This tween's [begin] is the parent's [end] and its [end] is the parent's
/// [begin]. The [lerp] method returns `parent.lerp(1.0 - t)` and its
/// [evaluate] method is similar.
final Tween<T> parent;
@override
T lerp(double t) => parent.lerp(1.0 - t);
}
/// An interpolation between two colors.
///
/// This class specializes the interpolation of [Tween<Color>] to use
/// [Color.lerp].
///
/// See [Tween] for a discussion on how to use interpolation objects.
class ColorTween extends Tween<Color> {
/// Creates a [Color] tween.
///
/// The [begin] and [end] properties may be null; the null value
/// is treated as transparent.
///
/// We recommend that you do not pass [Colors.transparent] as [begin]
/// or [end] if you want the effect of fading in or out of transparent.
/// Instead prefer null. [Colors.transparent] refers to black transparent and
/// thus will fade out of or into black which is likely unwanted.
ColorTween({ Color begin, Color end }) : super(begin: begin, end: end);
/// Returns the value this variable has at the given animation clock value.
@override
Color lerp(double t) => Color.lerp(begin, end, t);
}
/// An interpolation between two sizes.
///
/// This class specializes the interpolation of [Tween<Size>] to use
/// [Size.lerp].
///
/// See [Tween] for a discussion on how to use interpolation objects.
class SizeTween extends Tween<Size> {
/// Creates a [Size] tween.
///
/// The [begin] and [end] properties may be null; the null value
/// is treated as an empty size.
SizeTween({ Size begin, Size end }) : super(begin: begin, end: end);
/// Returns the value this variable has at the given animation clock value.
@override
Size lerp(double t) => Size.lerp(begin, end, t);
}
/// An interpolation between two rectangles.
///
/// This class specializes the interpolation of [Tween<Rect>] to use
/// [Rect.lerp].
///
/// See [Tween] for a discussion on how to use interpolation objects.
class RectTween extends Tween<Rect> {
/// Creates a [Rect] tween.
///
/// The [begin] and [end] properties may be null; the null value
/// is treated as an empty rect at the top left corner.
RectTween({ Rect begin, Rect end }) : super(begin: begin, end: end);
/// Returns the value this variable has at the given animation clock value.
@override
Rect lerp(double t) => Rect.lerp(begin, end, t);
}
/// An interpolation between two integers that rounds.
///
/// This class specializes the interpolation of [Tween<int>] to be
/// appropriate for integers by interpolating between the given begin
/// and end values and then rounding the result to the nearest
/// integer.
///
/// This is the closest approximation to a linear tween that is possible with an
/// integer. Compare to [StepTween] and [Tween<double>].
///
/// See [Tween] for a discussion on how to use interpolation objects.
class IntTween extends Tween<int> {
/// Creates an int tween.
///
/// The [begin] and [end] properties must be non-null before the tween is
/// first used, but the arguments can be null if the values are going to be
/// filled in later.
IntTween({ int begin, int end }) : super(begin: begin, end: end);
// The inherited lerp() function doesn't work with ints because it multiplies
// the begin and end types by a double, and int * double returns a double.
@override
int lerp(double t) => (begin + (end - begin) * t).round();
}
/// An interpolation between two integers that floors.
///
/// This class specializes the interpolation of [Tween<int>] to be
/// appropriate for integers by interpolating between the given begin
/// and end values and then using [int.floor] to return the current
/// integer component, dropping the fractional component.
///
/// This results in a value that is never greater than the equivalent
/// value from a linear double interpolation. Compare to [IntTween].
///
/// See [Tween] for a discussion on how to use interpolation objects.
class StepTween extends Tween<int> {
/// Creates an [int] tween that floors.
///
/// The [begin] and [end] properties must be non-null before the tween is
/// first used, but the arguments can be null if the values are going to be
/// filled in later.
StepTween({ int begin, int end }) : super(begin: begin, end: end);
// The inherited lerp() function doesn't work with ints because it multiplies
// the begin and end types by a double, and int * double returns a double.
@override
int lerp(double t) => (begin + (end - begin) * t).floor();
}
/// Transforms the value of the given animation by the given curve.
///
/// This class differs from [CurvedAnimation] in that [CurvedAnimation] applies
/// a curve to an existing [Animation] object whereas [CurveTween] can be
/// chained with another [Tween] prior to receiving the underlying [Animation].
class CurveTween extends Animatable<double> {
/// Creates a curve tween.
///
/// The [curve] argument must not be null.
CurveTween({ @required this.curve })
: assert(curve != null);
/// The curve to use when transforming the value of the animation.
Curve curve;
@override
double evaluate(Animation<double> animation) {
final double t = animation.value;
if (t == 0.0 || t == 1.0) {
assert(curve.transform(t).round() == t);
return t;
}
return curve.transform(t);
}
@override
String toString() => '$runtimeType(curve: $curve)';
}