1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:async';
import 'dart:collection';
import 'dart:developer';
import 'dart:ui' as ui show window;
import 'dart:ui' show AppLifecycleState;
import 'package:collection/collection.dart' show PriorityQueue, HeapPriorityQueue;
import 'package:flutter/foundation.dart';
import 'package:flutter/services.dart';
import 'debug.dart';
import 'priority.dart';
export 'dart:ui' show AppLifecycleState, VoidCallback;
/// Slows down animations by this factor to help in development.
double get timeDilation => _timeDilation;
double _timeDilation = 1.0;
/// Setting the time dilation automatically calls [SchedulerBinding.resetEpoch]
/// to ensure that time stamps seen by consumers of the scheduler binding are
/// always increasing.
set timeDilation(double value) {
assert(value > 0.0);
if (_timeDilation == value)
return;
// We need to resetEpoch first so that we capture start of the epoch with the
// current time dilation.
SchedulerBinding.instance?.resetEpoch();
_timeDilation = value;
}
/// Signature for frame-related callbacks from the scheduler.
///
/// The `timeStamp` is the number of milliseconds since the beginning of the
/// scheduler's epoch. Use timeStamp to determine how far to advance animation
/// timelines so that all the animations in the system are synchronized to a
/// common time base.
typedef void FrameCallback(Duration timeStamp);
/// Signature for [Scheduler.scheduleTask] callbacks.
///
/// The type argument `T` is the task's return value. Consider [void] if the
/// task does not return a value.
typedef T TaskCallback<T>();
/// Signature for the [SchedulerBinding.schedulingStrategy] callback. Called
/// whenever the system needs to decide whether a task at a given
/// priority needs to be run.
///
/// Return true if a task with the given priority should be executed
/// at this time, false otherwise.
///
/// See also [defaultSchedulingStrategy].
typedef bool SchedulingStrategy({ int priority, SchedulerBinding scheduler });
class _TaskEntry<T> {
_TaskEntry(this.task, this.priority, this.debugLabel, this.flow) {
// ignore: prefer_asserts_in_initializer_lists
assert(() {
debugStack = StackTrace.current;
return true;
}());
completer = new Completer<T>();
}
final TaskCallback<T> task;
final int priority;
final String debugLabel;
final Flow flow;
StackTrace debugStack;
Completer<T> completer;
void run() {
Timeline.timeSync(
debugLabel ?? 'Scheduled Task',
() {
completer.complete(task());
},
flow: flow != null ? Flow.step(flow.id) : null,
);
}
}
class _FrameCallbackEntry {
_FrameCallbackEntry(this.callback, { bool rescheduling: false }) {
assert(() {
if (rescheduling) {
assert(() {
if (debugCurrentCallbackStack == null) {
throw new FlutterError(
'scheduleFrameCallback called with rescheduling true, but no callback is in scope.\n'
'The "rescheduling" argument should only be set to true if the '
'callback is being reregistered from within the callback itself, '
'and only then if the callback itself is entirely synchronous. '
'If this is the initial registration of the callback, or if the '
'callback is asynchronous, then do not use the "rescheduling" '
'argument.'
);
}
return true;
}());
debugStack = debugCurrentCallbackStack;
} else {
// TODO(ianh): trim the frames from this library, so that the call to scheduleFrameCallback is the top one
debugStack = StackTrace.current;
}
return true;
}());
}
final FrameCallback callback;
static StackTrace debugCurrentCallbackStack;
StackTrace debugStack;
}
/// The various phases that a [SchedulerBinding] goes through during
/// [SchedulerBinding.handleBeginFrame].
///
/// This is exposed by [SchedulerBinding.schedulerPhase].
///
/// The values of this enum are ordered in the same order as the phases occur,
/// so their relative index values can be compared to each other.
///
/// See also the discussion at [WidgetsBinding.drawFrame].
enum SchedulerPhase {
/// No frame is being processed. Tasks (scheduled by
/// [WidgetsBinding.scheduleTask]), microtasks (scheduled by
/// [scheduleMicrotask]), [Timer] callbacks, event handlers (e.g. from user
/// input), and other callbacks (e.g. from [Future]s, [Stream]s, and the like)
/// may be executing.
idle,
/// The transient callbacks (scheduled by
/// [WidgetsBinding.scheduleFrameCallback]) are currently executing.
///
/// Typically, these callbacks handle updating objects to new animation
/// states.
///
/// See [SchedulerBinding.handleBeginFrame].
transientCallbacks,
/// Microtasks scheduled during the processing of transient callbacks are
/// current executing.
///
/// This may include, for instance, callbacks from futures resulted during the
/// [transientCallbacks] phase.
midFrameMicrotasks,
/// The persistent callbacks (scheduled by
/// [WidgetsBinding.addPersistentFrameCallback]) are currently executing.
///
/// Typically, this is the build/layout/paint pipeline. See
/// [WidgetsBinding.drawFrame] and [SchedulerBinding.handleDrawFrame].
persistentCallbacks,
/// The post-frame callbacks (scheduled by
/// [WidgetsBinding.addPostFrameCallback]) are currently executing.
///
/// Typically, these callbacks handle cleanup and scheduling of work for the
/// next frame.
///
/// See [SchedulerBinding.handleDrawFrame].
postFrameCallbacks,
}
/// Scheduler for running the following:
///
/// * _Transient callbacks_, triggered by the system's [Window.onBeginFrame]
/// callback, for synchronizing the application's behavior to the system's
/// display. For example, [Ticker]s and [AnimationController]s trigger from
/// these.
///
/// * _Persistent callbacks_, triggered by the system's [Window.onDrawFrame]
/// callback, for updating the system's display after transient callbacks have
/// executed. For example, the rendering layer uses this to drive its
/// rendering pipeline.
///
/// * _Post-frame callbacks_, which are run after persistent callbacks, just
/// before returning from the [Window.onDrawFrame] callback.
///
/// * Non-rendering tasks, to be run between frames. These are given a
/// priority and are executed in priority order according to a
/// [schedulingStrategy].
abstract class SchedulerBinding extends BindingBase with ServicesBinding {
// This class is intended to be used as a mixin, and should not be
// extended directly.
factory SchedulerBinding._() => null;
@override
void initInstances() {
super.initInstances();
_instance = this;
ui.window.onBeginFrame = _handleBeginFrame;
ui.window.onDrawFrame = _handleDrawFrame;
SystemChannels.lifecycle.setMessageHandler(_handleLifecycleMessage);
}
/// The current [SchedulerBinding], if one has been created.
static SchedulerBinding get instance => _instance;
static SchedulerBinding _instance;
@override
void initServiceExtensions() {
super.initServiceExtensions();
registerNumericServiceExtension(
name: 'timeDilation',
getter: () async => timeDilation,
setter: (double value) async {
timeDilation = value;
}
);
}
/// Whether the application is visible, and if so, whether it is currently
/// interactive.
///
/// This is set by [handleAppLifecycleStateChanged] when the
/// [SystemChannels.lifecycle] notification is dispatched.
///
/// The preferred way to watch for changes to this value is using
/// [WidgetsBindingObserver.didChangeAppLifecycleState].
AppLifecycleState get lifecycleState => _lifecycleState;
AppLifecycleState _lifecycleState;
/// Called when the application lifecycle state changes.
///
/// Notifies all the observers using
/// [WidgetsBindingObserver.didChangeAppLifecycleState].
///
/// This method exposes notifications from [SystemChannels.lifecycle].
@protected
@mustCallSuper
void handleAppLifecycleStateChanged(AppLifecycleState state) {
assert(state != null);
_lifecycleState = state;
switch (state) {
case AppLifecycleState.resumed:
case AppLifecycleState.inactive:
_setFramesEnabledState(true);
break;
case AppLifecycleState.paused:
case AppLifecycleState.suspending:
_setFramesEnabledState(false);
break;
}
}
Future<String> _handleLifecycleMessage(String message) {
handleAppLifecycleStateChanged(_parseAppLifecycleMessage(message));
return null;
}
static AppLifecycleState _parseAppLifecycleMessage(String message) {
switch (message) {
case 'AppLifecycleState.paused':
return AppLifecycleState.paused;
case 'AppLifecycleState.resumed':
return AppLifecycleState.resumed;
case 'AppLifecycleState.inactive':
return AppLifecycleState.inactive;
case 'AppLifecycleState.suspending':
return AppLifecycleState.suspending;
}
return null;
}
/// The strategy to use when deciding whether to run a task or not.
///
/// Defaults to [defaultSchedulingStrategy].
SchedulingStrategy schedulingStrategy = defaultSchedulingStrategy;
static int _taskSorter (_TaskEntry<dynamic> e1, _TaskEntry<dynamic> e2) {
return -e1.priority.compareTo(e2.priority);
}
final PriorityQueue<_TaskEntry<dynamic>> _taskQueue = new HeapPriorityQueue<_TaskEntry<dynamic>>(_taskSorter);
/// Schedules the given `task` with the given `priority` and returns a
/// [Future] that completes to the `task`'s eventual return value.
///
/// The `debugLabel` and `flow` are used to report the task to the [Timeline],
/// for use when profiling.
///
/// ## Processing model
///
/// Tasks will be executed between frames, in priority order,
/// excluding tasks that are skipped by the current
/// [schedulingStrategy]. Tasks should be short (as in, up to a
/// millisecond), so as to not cause the regular frame callbacks to
/// get delayed.
///
/// If an animation is running, including, for instance, a [ProgressIndicator]
/// indicating that there are pending tasks, then tasks with a priority below
/// [Priority.animation] won't run (at least, not with the
/// [defaultSchedulingStrategy]; this can be configured using
/// [schedulingStrategy]).
Future<T> scheduleTask<T>(TaskCallback<T> task, Priority priority, {
String debugLabel,
Flow flow,
}) {
final bool isFirstTask = _taskQueue.isEmpty;
final _TaskEntry<T> entry = new _TaskEntry<T>(
task,
priority.value,
debugLabel,
flow,
);
_taskQueue.add(entry);
if (isFirstTask && !locked)
_ensureEventLoopCallback();
return entry.completer.future;
}
@override
void unlocked() {
super.unlocked();
if (_taskQueue.isNotEmpty)
_ensureEventLoopCallback();
}
// Whether this scheduler already requested to be called from the event loop.
bool _hasRequestedAnEventLoopCallback = false;
// Ensures that the scheduler services a task scheduled by [scheduleTask].
void _ensureEventLoopCallback() {
assert(!locked);
assert(_taskQueue.isNotEmpty);
if (_hasRequestedAnEventLoopCallback)
return;
_hasRequestedAnEventLoopCallback = true;
Timer.run(_runTasks);
}
// Scheduled by _ensureEventLoopCallback.
void _runTasks() {
_hasRequestedAnEventLoopCallback = false;
if (handleEventLoopCallback())
_ensureEventLoopCallback(); // runs next task when there's time
}
/// Execute the highest-priority task, if it is of a high enough priority.
///
/// Returns true if a task was executed and there are other tasks remaining
/// (even if they are not high-enough priority).
///
/// Returns false if no task was executed, which can occur if there are no
/// tasks scheduled, if the scheduler is [locked], or if the highest-priority
/// task is of too low a priority given the current [schedulingStrategy].
///
/// Also returns false if there are no tasks remaining.
@visibleForTesting
bool handleEventLoopCallback() {
if (_taskQueue.isEmpty || locked)
return false;
final _TaskEntry<dynamic> entry = _taskQueue.first;
if (schedulingStrategy(priority: entry.priority, scheduler: this)) {
try {
_taskQueue.removeFirst();
entry.run();
} catch (exception, exceptionStack) {
StackTrace callbackStack;
assert(() {
callbackStack = entry.debugStack;
return true;
}());
FlutterError.reportError(new FlutterErrorDetails(
exception: exception,
stack: exceptionStack,
library: 'scheduler library',
context: 'during a task callback',
informationCollector: (callbackStack == null) ? null : (StringBuffer information) {
information.writeln(
'\nThis exception was thrown in the context of a task callback. '
'When the task callback was _registered_ (as opposed to when the '
'exception was thrown), this was the stack:'
);
FlutterError.defaultStackFilter(callbackStack.toString().trimRight().split('\n')).forEach(information.writeln);
}
));
}
return _taskQueue.isNotEmpty;
}
return false;
}
int _nextFrameCallbackId = 0; // positive
Map<int, _FrameCallbackEntry> _transientCallbacks = <int, _FrameCallbackEntry>{};
final Set<int> _removedIds = new HashSet<int>();
/// The current number of transient frame callbacks scheduled.
///
/// This is reset to zero just before all the currently scheduled
/// transient callbacks are called, at the start of a frame.
///
/// This number is primarily exposed so that tests can verify that
/// there are no unexpected transient callbacks still registered
/// after a test's resources have been gracefully disposed.
int get transientCallbackCount => _transientCallbacks.length;
/// Schedules the given transient frame callback.
///
/// Adds the given callback to the list of frame callbacks and ensures that a
/// frame is scheduled.
///
/// If this is a one-off registration, ignore the `rescheduling` argument.
///
/// If this is a callback that will be reregistered each time it fires, then
/// when you reregister the callback, set the `rescheduling` argument to true.
/// This has no effect in release builds, but in debug builds, it ensures that
/// the stack trace that is stored for this callback is the original stack
/// trace for when the callback was _first_ registered, rather than the stack
/// trace for when the callback is reregistered. This makes it easier to track
/// down the original reason that a particular callback was called. If
/// `rescheduling` is true, the call must be in the context of a frame
/// callback.
///
/// Callbacks registered with this method can be canceled using
/// [cancelFrameCallbackWithId].
int scheduleFrameCallback(FrameCallback callback, { bool rescheduling: false }) {
scheduleFrame();
_nextFrameCallbackId += 1;
_transientCallbacks[_nextFrameCallbackId] = new _FrameCallbackEntry(callback, rescheduling: rescheduling);
return _nextFrameCallbackId;
}
/// Cancels the transient frame callback with the given [id].
///
/// Removes the given callback from the list of frame callbacks. If a frame
/// has been requested, this does not also cancel that request.
///
/// Transient frame callbacks are those registered using
/// [scheduleFrameCallback].
void cancelFrameCallbackWithId(int id) {
assert(id > 0);
_transientCallbacks.remove(id);
_removedIds.add(id);
}
/// Asserts that there are no registered transient callbacks; if
/// there are, prints their locations and throws an exception.
///
/// A transient frame callback is one that was registered with
/// [scheduleFrameCallback].
///
/// This is expected to be called at the end of tests (the
/// flutter_test framework does it automatically in normal cases).
///
/// Call this method when you expect there to be no transient
/// callbacks registered, in an assert statement with a message that
/// you want printed when a transient callback is registered:
///
/// ```dart
/// assert(SchedulerBinding.instance.debugAssertNoTransientCallbacks(
/// 'A leak of transient callbacks was detected while doing foo.'
/// ));
/// ```
///
/// Does nothing if asserts are disabled. Always returns true.
bool debugAssertNoTransientCallbacks(String reason) {
assert(() {
if (transientCallbackCount > 0) {
// We cache the values so that we can produce them later
// even if the information collector is called after
// the problem has been resolved.
final int count = transientCallbackCount;
final Map<int, _FrameCallbackEntry> callbacks = new Map<int, _FrameCallbackEntry>.from(_transientCallbacks);
FlutterError.reportError(new FlutterErrorDetails(
exception: reason,
library: 'scheduler library',
informationCollector: (StringBuffer information) {
if (count == 1) {
information.writeln(
'There was one transient callback left. '
'The stack trace for when it was registered is as follows:'
);
} else {
information.writeln(
'There were $count transient callbacks left. '
'The stack traces for when they were registered are as follows:'
);
}
for (int id in callbacks.keys) {
final _FrameCallbackEntry entry = callbacks[id];
information.writeln('── callback $id ──');
FlutterError.defaultStackFilter(entry.debugStack.toString().trimRight().split('\n')).forEach(information.writeln);
}
}
));
}
return true;
}());
return true;
}
/// Prints the stack for where the current transient callback was registered.
///
/// A transient frame callback is one that was registered with
/// [scheduleFrameCallback].
///
/// When called in debug more and in the context of a transient callback, this
/// function prints the stack trace from where the current transient callback
/// was registered (i.e. where it first called [scheduleFrameCallback]).
///
/// When called in debug mode in other contexts, it prints a message saying
/// that this function was not called in the context a transient callback.
///
/// In release mode, this function does nothing.
///
/// To call this function, use the following code:
///
/// ```dart
/// SchedulerBinding.debugPrintTransientCallbackRegistrationStack();
/// ```
static void debugPrintTransientCallbackRegistrationStack() {
assert(() {
if (_FrameCallbackEntry.debugCurrentCallbackStack != null) {
debugPrint('When the current transient callback was registered, this was the stack:');
debugPrint(
FlutterError.defaultStackFilter(
_FrameCallbackEntry.debugCurrentCallbackStack.toString().trimRight().split('\n')
).join('\n')
);
} else {
debugPrint('No transient callback is currently executing.');
}
return true;
}());
}
final List<FrameCallback> _persistentCallbacks = <FrameCallback>[];
/// Adds a persistent frame callback.
///
/// Persistent callbacks are called after transient
/// (non-persistent) frame callbacks.
///
/// Does *not* request a new frame. Conceptually, persistent frame
/// callbacks are observers of "begin frame" events. Since they are
/// executed after the transient frame callbacks they can drive the
/// rendering pipeline.
///
/// Persistent frame callbacks cannot be unregistered. Once registered, they
/// are called for every frame for the lifetime of the application.
void addPersistentFrameCallback(FrameCallback callback) {
_persistentCallbacks.add(callback);
}
final List<FrameCallback> _postFrameCallbacks = <FrameCallback>[];
/// Schedule a callback for the end of this frame.
///
/// Does *not* request a new frame.
///
/// This callback is run during a frame, just after the persistent
/// frame callbacks (which is when the main rendering pipeline has
/// been flushed). If a frame is in progress and post-frame
/// callbacks haven't been executed yet, then the registered
/// callback is still executed during the frame. Otherwise, the
/// registered callback is executed during the next frame.
///
/// The callbacks are executed in the order in which they have been
/// added.
///
/// Post-frame callbacks cannot be unregistered. They are called exactly once.
///
/// See also:
///
/// * [scheduleFrameCallback], which registers a callback for the start of
/// the next frame.
void addPostFrameCallback(FrameCallback callback) {
_postFrameCallbacks.add(callback);
}
Completer<Null> _nextFrameCompleter;
/// Returns a Future that completes after the frame completes.
///
/// If this is called between frames, a frame is immediately scheduled if
/// necessary. If this is called during a frame, the Future completes after
/// the current frame.
///
/// If the device's screen is currently turned off, this may wait a very long
/// time, since frames are not scheduled while the device's screen is turned
/// off.
Future<Null> get endOfFrame {
if (_nextFrameCompleter == null) {
if (schedulerPhase == SchedulerPhase.idle)
scheduleFrame();
_nextFrameCompleter = new Completer<Null>();
addPostFrameCallback((Duration timeStamp) {
_nextFrameCompleter.complete();
_nextFrameCompleter = null;
});
}
return _nextFrameCompleter.future;
}
/// Whether this scheduler has requested that [handleBeginFrame] be called soon.
bool get hasScheduledFrame => _hasScheduledFrame;
bool _hasScheduledFrame = false;
/// The phase that the scheduler is currently operating under.
SchedulerPhase get schedulerPhase => _schedulerPhase;
SchedulerPhase _schedulerPhase = SchedulerPhase.idle;
/// Whether frames are currently being scheduled when [scheduleFrame] is called.
///
/// This value depends on the value of the [lifecycleState].
bool get framesEnabled => _framesEnabled;
bool _framesEnabled = true;
void _setFramesEnabledState(bool enabled) {
if (_framesEnabled == enabled)
return;
_framesEnabled = enabled;
if (enabled)
scheduleFrame();
}
/// Schedules a new frame using [scheduleFrame] if this object is not
/// currently producing a frame.
///
/// Calling this method ensures that [handleDrawFrame] will eventually be
/// called, unless it's already in progress.
///
/// This has no effect if [schedulerPhase] is
/// [SchedulerPhase.transientCallbacks] or [SchedulerPhase.midFrameMicrotasks]
/// (because a frame is already being prepared in that case), or
/// [SchedulerPhase.persistentCallbacks] (because a frame is actively being
/// rendered in that case). It will schedule a frame if the [schedulerPhase]
/// is [SchedulerPhase.idle] (in between frames) or
/// [SchedulerPhase.postFrameCallbacks] (after a frame).
void ensureVisualUpdate() {
switch (schedulerPhase) {
case SchedulerPhase.idle:
case SchedulerPhase.postFrameCallbacks:
scheduleFrame();
return;
case SchedulerPhase.transientCallbacks:
case SchedulerPhase.midFrameMicrotasks:
case SchedulerPhase.persistentCallbacks:
return;
}
}
/// If necessary, schedules a new frame by calling
/// [Window.scheduleFrame].
///
/// After this is called, the engine will (eventually) call
/// [handleBeginFrame]. (This call might be delayed, e.g. if the device's
/// screen is turned off it will typically be delayed until the screen is on
/// and the application is visible.) Calling this during a frame forces
/// another frame to be scheduled, even if the current frame has not yet
/// completed.
///
/// Scheduled frames are serviced when triggered by a "Vsync" signal provided
/// by the operating system. The "Vsync" signal, or vertical synchronization
/// signal, was historically related to the display refresh, at a time when
/// hardware physically moved a beam of electrons vertically between updates
/// of the display. The operation of contemporary hardware is somewhat more
/// subtle and complicated, but the conceptual "Vsync" refresh signal continue
/// to be used to indicate when applications should update their rendering.
///
/// To have a stack trace printed to the console any time this function
/// schedules a frame, set [debugPrintScheduleFrameStacks] to true.
///
/// See also:
///
/// * [scheduleForcedFrame], which ignores the [lifecycleState] when
/// scheduling a frame.
/// * [scheduleWarmUpFrame], which ignores the "Vsync" signal entirely and
/// triggers a frame immediately.
void scheduleFrame() {
if (_hasScheduledFrame || !_framesEnabled)
return;
assert(() {
if (debugPrintScheduleFrameStacks)
debugPrintStack(label: 'scheduleFrame() called. Current phase is $schedulerPhase.');
return true;
}());
ui.window.scheduleFrame();
_hasScheduledFrame = true;
}
/// Schedules a new frame by calling [Window.scheduleFrame].
///
/// After this is called, the engine will call [handleBeginFrame], even if
/// frames would normally not be scheduled by [scheduleFrame] (e.g. even if
/// the device's screen is turned off).
///
/// The framework uses this to force a frame to be rendered at the correct
/// size when the phone is rotated, so that a correctly-sized rendering is
/// available when the screen is turned back on.
///
/// To have a stack trace printed to the console any time this function
/// schedules a frame, set [debugPrintScheduleFrameStacks] to true.
///
/// Prefer using [scheduleFrame] unless it is imperative that a frame be
/// scheduled immediately, since using [scheduleForceFrame] will cause
/// significantly higher battery usage when the device should be idle.
///
/// Consider using [scheduleWarmUpFrame] instead if the goal is to update the
/// rendering as soon as possible (e.g. at application startup).
void scheduleForcedFrame() {
if (_hasScheduledFrame)
return;
assert(() {
if (debugPrintScheduleFrameStacks)
debugPrintStack(label: 'scheduleForcedFrame() called. Current phase is $schedulerPhase.');
return true;
}());
ui.window.scheduleFrame();
_hasScheduledFrame = true;
}
bool _warmUpFrame = false;
/// Schedule a frame to run as soon as possible, rather than waiting for
/// the engine to request a frame in response to a system "Vsync" signal.
///
/// This is used during application startup so that the first frame (which is
/// likely to be quite expensive) gets a few extra milliseconds to run.
///
/// Locks events dispatching until the scheduled frame has completed.
///
/// If a frame has already been scheduled with [scheduleFrame] or
/// [scheduleForcedFrame], this call may delay that frame.
///
/// If any scheduled frame has already begun or if another
/// [scheduleWarmUpFrame] was already called, this call will be ignored.
///
/// Prefer [scheduleFrame] to update the display in normal operation.
void scheduleWarmUpFrame() {
if (_warmUpFrame || schedulerPhase != SchedulerPhase.idle)
return;
_warmUpFrame = true;
Timeline.startSync('Warm-up frame');
final bool hadScheduledFrame = _hasScheduledFrame;
// We use timers here to ensure that microtasks flush in between.
Timer.run(() {
assert(_warmUpFrame);
handleBeginFrame(null);
});
Timer.run(() {
assert(_warmUpFrame);
handleDrawFrame();
// We call resetEpoch after this frame so that, in the hot reload case,
// the very next frame pretends to have occurred immediately after this
// warm-up frame. The warm-up frame's timestamp will typically be far in
// the past (the time of the last real frame), so if we didn't reset the
// epoch we would see a sudden jump from the old time in the warm-up frame
// to the new time in the "real" frame. The biggest problem with this is
// that implicit animations end up being triggered at the old time and
// then skipping every frame and finishing in the new time.
resetEpoch();
_warmUpFrame = false;
if (hadScheduledFrame)
scheduleFrame();
});
// Lock events so touch events etc don't insert themselves until the
// scheduled frame has finished.
lockEvents(() async {
await endOfFrame;
Timeline.finishSync();
});
}
Duration _firstRawTimeStampInEpoch;
Duration _epochStart = Duration.ZERO;
Duration _lastRawTimeStamp = Duration.ZERO;
/// Prepares the scheduler for a non-monotonic change to how time stamps are
/// calculated.
///
/// Callbacks received from the scheduler assume that their time stamps are
/// monotonically increasing. The raw time stamp passed to [handleBeginFrame]
/// is monotonic, but the scheduler might adjust those time stamps to provide
/// [timeDilation]. Without careful handling, these adjusts could cause time
/// to appear to run backwards.
///
/// The [resetEpoch] function ensures that the time stamps are monotonic by
/// resetting the base time stamp used for future time stamp adjustments to the
/// current value. For example, if the [timeDilation] decreases, rather than
/// scaling down the [Duration] since the beginning of time, [resetEpoch] will
/// ensure that we only scale down the duration since [resetEpoch] was called.
///
/// Setting [timeDilation] calls [resetEpoch] automatically. You don't need to
/// call [resetEpoch] yourself.
void resetEpoch() {
_epochStart = _adjustForEpoch(_lastRawTimeStamp);
_firstRawTimeStampInEpoch = null;
}
/// Adjusts the given time stamp into the current epoch.
///
/// This both offsets the time stamp to account for when the epoch started
/// (both in raw time and in the epoch's own time line) and scales the time
/// stamp to reflect the time dilation in the current epoch.
///
/// These mechanisms together combine to ensure that the durations we give
/// during frame callbacks are monotonically increasing.
Duration _adjustForEpoch(Duration rawTimeStamp) {
final Duration rawDurationSinceEpoch = _firstRawTimeStampInEpoch == null ? Duration.ZERO : rawTimeStamp - _firstRawTimeStampInEpoch;
return new Duration(microseconds: (rawDurationSinceEpoch.inMicroseconds / timeDilation).round() + _epochStart.inMicroseconds);
}
/// The time stamp for the frame currently being processed.
///
/// This is only valid while [handleBeginFrame] is running, i.e. while a frame
/// is being produced.
Duration get currentFrameTimeStamp {
assert(_currentFrameTimeStamp != null);
return _currentFrameTimeStamp;
}
Duration _currentFrameTimeStamp;
int _profileFrameNumber = 0;
final Stopwatch _profileFrameStopwatch = new Stopwatch();
String _debugBanner;
bool _ignoreNextEngineDrawFrame = false;
void _handleBeginFrame(Duration rawTimeStamp) {
if (_warmUpFrame) {
assert(!_ignoreNextEngineDrawFrame);
_ignoreNextEngineDrawFrame = true;
return;
}
handleBeginFrame(rawTimeStamp);
}
void _handleDrawFrame() {
if (_ignoreNextEngineDrawFrame) {
_ignoreNextEngineDrawFrame = false;
return;
}
handleDrawFrame();
}
/// Called by the engine to prepare the framework to produce a new frame.
///
/// This function calls all the transient frame callbacks registered by
/// [scheduleFrameCallback]. It then returns, any scheduled microtasks are run
/// (e.g. handlers for any [Future]s resolved by transient frame callbacks),
/// and [handleDrawFrame] is called to continue the frame.
///
/// If the given time stamp is null, the time stamp from the last frame is
/// reused.
///
/// To have a banner shown at the start of every frame in debug mode, set
/// [debugPrintBeginFrameBanner] to true. The banner will be printed to the
/// console using [debugPrint] and will contain the frame number (which
/// increments by one for each frame), and the time stamp of the frame. If the
/// given time stamp was null, then the string "warm-up frame" is shown
/// instead of the time stamp. This allows frames eagerly pushed by the
/// framework to be distinguished from those requested by the engine in
/// response to the "Vsync" signal from the operating system.
///
/// You can also show a banner at the end of every frame by setting
/// [debugPrintEndFrameBanner] to true. This allows you to distinguish log
/// statements printed during a frame from those printed between frames (e.g.
/// in response to events or timers).
void handleBeginFrame(Duration rawTimeStamp) {
Timeline.startSync('Frame', arguments: timelineWhitelistArguments);
_firstRawTimeStampInEpoch ??= rawTimeStamp;
_currentFrameTimeStamp = _adjustForEpoch(rawTimeStamp ?? _lastRawTimeStamp);
if (rawTimeStamp != null)
_lastRawTimeStamp = rawTimeStamp;
profile(() {
_profileFrameNumber += 1;
_profileFrameStopwatch.reset();
_profileFrameStopwatch.start();
});
assert(() {
if (debugPrintBeginFrameBanner || debugPrintEndFrameBanner) {
final StringBuffer frameTimeStampDescription = new StringBuffer();
if (rawTimeStamp != null) {
_debugDescribeTimeStamp(_currentFrameTimeStamp, frameTimeStampDescription);
} else {
frameTimeStampDescription.write('(warm-up frame)');
}
_debugBanner = '▄▄▄▄▄▄▄▄ Frame ${_profileFrameNumber.toString().padRight(7)} ${frameTimeStampDescription.toString().padLeft(18)} ▄▄▄▄▄▄▄▄';
if (debugPrintBeginFrameBanner)
debugPrint(_debugBanner);
}
return true;
}());
assert(schedulerPhase == SchedulerPhase.idle);
_hasScheduledFrame = false;
try {
// TRANSIENT FRAME CALLBACKS
Timeline.startSync('Animate', arguments: timelineWhitelistArguments);
_schedulerPhase = SchedulerPhase.transientCallbacks;
final Map<int, _FrameCallbackEntry> callbacks = _transientCallbacks;
_transientCallbacks = <int, _FrameCallbackEntry>{};
callbacks.forEach((int id, _FrameCallbackEntry callbackEntry) {
if (!_removedIds.contains(id))
_invokeFrameCallback(callbackEntry.callback, _currentFrameTimeStamp, callbackEntry.debugStack);
});
_removedIds.clear();
} finally {
_schedulerPhase = SchedulerPhase.midFrameMicrotasks;
}
}
/// Called by the engine to produce a new frame.
///
/// This method is called immediately after [handleBeginFrame]. It calls all
/// the callbacks registered by [addPersistentFrameCallback], which typically
/// drive the rendering pipeline, and then calls the callbacks registered by
/// [addPostFrameCallback].
///
/// See [handleBeginFrame] for a discussion about debugging hooks that may be
/// useful when working with frame callbacks.
void handleDrawFrame() {
assert(_schedulerPhase == SchedulerPhase.midFrameMicrotasks);
Timeline.finishSync(); // end the "Animate" phase
try {
// PERSISTENT FRAME CALLBACKS
_schedulerPhase = SchedulerPhase.persistentCallbacks;
for (FrameCallback callback in _persistentCallbacks)
_invokeFrameCallback(callback, _currentFrameTimeStamp);
// POST-FRAME CALLBACKS
_schedulerPhase = SchedulerPhase.postFrameCallbacks;
final List<FrameCallback> localPostFrameCallbacks =
new List<FrameCallback>.from(_postFrameCallbacks);
_postFrameCallbacks.clear();
for (FrameCallback callback in localPostFrameCallbacks)
_invokeFrameCallback(callback, _currentFrameTimeStamp);
} finally {
_schedulerPhase = SchedulerPhase.idle;
Timeline.finishSync(); // end the Frame
profile(() {
_profileFrameStopwatch.stop();
_profileFramePostEvent();
});
assert(() {
if (debugPrintEndFrameBanner)
debugPrint('▀' * _debugBanner.length);
_debugBanner = null;
return true;
}());
_currentFrameTimeStamp = null;
}
}
void _profileFramePostEvent() {
postEvent('Flutter.Frame', <String, dynamic>{
'number': _profileFrameNumber,
'startTime': _currentFrameTimeStamp.inMicroseconds,
'elapsed': _profileFrameStopwatch.elapsedMicroseconds
});
}
static void _debugDescribeTimeStamp(Duration timeStamp, StringBuffer buffer) {
if (timeStamp.inDays > 0)
buffer.write('${timeStamp.inDays}d ');
if (timeStamp.inHours > 0)
buffer.write('${timeStamp.inHours - timeStamp.inDays * Duration.HOURS_PER_DAY}h ');
if (timeStamp.inMinutes > 0)
buffer.write('${timeStamp.inMinutes - timeStamp.inHours * Duration.MINUTES_PER_HOUR}m ');
if (timeStamp.inSeconds > 0)
buffer.write('${timeStamp.inSeconds - timeStamp.inMinutes * Duration.SECONDS_PER_MINUTE}s ');
buffer.write('${timeStamp.inMilliseconds - timeStamp.inSeconds * Duration.MILLISECONDS_PER_SECOND}');
final int microseconds = timeStamp.inMicroseconds - timeStamp.inMilliseconds * Duration.MICROSECONDS_PER_MILLISECOND;
if (microseconds > 0)
buffer.write('.${microseconds.toString().padLeft(3, "0")}');
buffer.write('ms');
}
// Calls the given [callback] with [timestamp] as argument.
//
// Wraps the callback in a try/catch and forwards any error to
// [debugSchedulerExceptionHandler], if set. If not set, then simply prints
// the error.
void _invokeFrameCallback(FrameCallback callback, Duration timeStamp, [ StackTrace callbackStack ]) {
assert(callback != null);
assert(_FrameCallbackEntry.debugCurrentCallbackStack == null);
assert(() { _FrameCallbackEntry.debugCurrentCallbackStack = callbackStack; return true; }());
try {
callback(timeStamp);
} catch (exception, exceptionStack) {
FlutterError.reportError(new FlutterErrorDetails(
exception: exception,
stack: exceptionStack,
library: 'scheduler library',
context: 'during a scheduler callback',
informationCollector: (callbackStack == null) ? null : (StringBuffer information) {
information.writeln(
'\nThis exception was thrown in the context of a scheduler callback. '
'When the scheduler callback was _registered_ (as opposed to when the '
'exception was thrown), this was the stack:'
);
FlutterError.defaultStackFilter(callbackStack.toString().trimRight().split('\n')).forEach(information.writeln);
}
));
}
assert(() { _FrameCallbackEntry.debugCurrentCallbackStack = null; return true; }());
}
}
/// The default [SchedulingStrategy] for [SchedulerBinding.schedulingStrategy].
///
/// If there are any frame callbacks registered, only runs tasks with
/// a [Priority] of [Priority.animation] or higher. Otherwise, runs
/// all tasks.
bool defaultSchedulingStrategy({ int priority, SchedulerBinding scheduler }) {
if (scheduler.transientCallbackCount > 0)
return priority >= Priority.animation.value;
return true;
}