• Ian Hickson's avatar
    [H] Move the splitting of licenses to an isolate (#14160) · a29d723c
    Ian Hickson authored
    * Move the splitting of licenses to an isolate
    
    This improves (from horrific to terrible) the performance of the
    license screen. It also introduces a feature in the foundation layer
    to make using isolates for one-off computations easier.
    
    The real problem that remains with this, though, is that transfering
    data between isolates is a stop-the-world operation and can take an
    absurd amount of time (far more than a few milliseconds), so we still
    skip frames.
    
    More work thus remains to be done.
    
    * - Add profile instrumentation to the isolate compute() method
    - Add profile instrumentation to the LicensePage
    - Add profile instrumentation to the scheduleTask method
    - Make scheduleTask support returning a value
    - Make the license page builder logic use scheduled tasks so that it doesn't blow the frame budget
    Unverified
    a29d723c
binding.dart 39 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

import 'dart:async';
import 'dart:collection';
import 'dart:developer';
import 'dart:ui' as ui show window;
import 'dart:ui' show AppLifecycleState;

import 'package:collection/collection.dart' show PriorityQueue, HeapPriorityQueue;
import 'package:flutter/foundation.dart';
import 'package:flutter/services.dart';

import 'debug.dart';
import 'priority.dart';

export 'dart:ui' show AppLifecycleState, VoidCallback;

/// Slows down animations by this factor to help in development.
double get timeDilation => _timeDilation;
double _timeDilation = 1.0;
/// Setting the time dilation automatically calls [SchedulerBinding.resetEpoch]
/// to ensure that time stamps seen by consumers of the scheduler binding are
/// always increasing.
set timeDilation(double value) {
  assert(value > 0.0);
  if (_timeDilation == value)
    return;
  // We need to resetEpoch first so that we capture start of the epoch with the
  // current time dilation.
  SchedulerBinding.instance?.resetEpoch();
  _timeDilation = value;
}

/// Signature for frame-related callbacks from the scheduler.
///
/// The `timeStamp` is the number of milliseconds since the beginning of the
/// scheduler's epoch. Use timeStamp to determine how far to advance animation
/// timelines so that all the animations in the system are synchronized to a
/// common time base.
typedef void FrameCallback(Duration timeStamp);

/// Signature for [Scheduler.scheduleTask] callbacks.
///
/// The type argument `T` is the task's return value. Consider [void] if the
/// task does not return a value.
typedef T TaskCallback<T>();

/// Signature for the [SchedulerBinding.schedulingStrategy] callback. Called
/// whenever the system needs to decide whether a task at a given
/// priority needs to be run.
///
/// Return true if a task with the given priority should be executed
/// at this time, false otherwise.
///
/// See also [defaultSchedulingStrategy].
typedef bool SchedulingStrategy({ int priority, SchedulerBinding scheduler });

class _TaskEntry<T> {
  _TaskEntry(this.task, this.priority, this.debugLabel, this.flow) {
    // ignore: prefer_asserts_in_initializer_lists
    assert(() {
      debugStack = StackTrace.current;
      return true;
    }());
    completer = new Completer<T>();
  }
  final TaskCallback<T> task;
  final int priority;
  final String debugLabel;
  final Flow flow;

  StackTrace debugStack;
  Completer<T> completer;

  void run() {
    Timeline.timeSync(
      debugLabel ?? 'Scheduled Task',
      () {
        completer.complete(task());
      },
      flow: flow != null ? Flow.step(flow.id) : null,
    );
  }
}

class _FrameCallbackEntry {
  _FrameCallbackEntry(this.callback, { bool rescheduling: false }) {
    assert(() {
      if (rescheduling) {
        assert(() {
          if (debugCurrentCallbackStack == null) {
            throw new FlutterError(
              'scheduleFrameCallback called with rescheduling true, but no callback is in scope.\n'
              'The "rescheduling" argument should only be set to true if the '
              'callback is being reregistered from within the callback itself, '
              'and only then if the callback itself is entirely synchronous. '
              'If this is the initial registration of the callback, or if the '
              'callback is asynchronous, then do not use the "rescheduling" '
              'argument.'
            );
          }
          return true;
        }());
        debugStack = debugCurrentCallbackStack;
      } else {
        // TODO(ianh): trim the frames from this library, so that the call to scheduleFrameCallback is the top one
        debugStack = StackTrace.current;
      }
      return true;
    }());
  }

  final FrameCallback callback;

  static StackTrace debugCurrentCallbackStack;
  StackTrace debugStack;
}

/// The various phases that a [SchedulerBinding] goes through during
/// [SchedulerBinding.handleBeginFrame].
///
/// This is exposed by [SchedulerBinding.schedulerPhase].
///
/// The values of this enum are ordered in the same order as the phases occur,
/// so their relative index values can be compared to each other.
///
/// See also the discussion at [WidgetsBinding.drawFrame].
enum SchedulerPhase {
  /// No frame is being processed. Tasks (scheduled by
  /// [WidgetsBinding.scheduleTask]), microtasks (scheduled by
  /// [scheduleMicrotask]), [Timer] callbacks, event handlers (e.g. from user
  /// input), and other callbacks (e.g. from [Future]s, [Stream]s, and the like)
  /// may be executing.
  idle,

  /// The transient callbacks (scheduled by
  /// [WidgetsBinding.scheduleFrameCallback]) are currently executing.
  ///
  /// Typically, these callbacks handle updating objects to new animation
  /// states.
  ///
  /// See [SchedulerBinding.handleBeginFrame].
  transientCallbacks,

  /// Microtasks scheduled during the processing of transient callbacks are
  /// current executing.
  ///
  /// This may include, for instance, callbacks from futures resulted during the
  /// [transientCallbacks] phase.
  midFrameMicrotasks,

  /// The persistent callbacks (scheduled by
  /// [WidgetsBinding.addPersistentFrameCallback]) are currently executing.
  ///
  /// Typically, this is the build/layout/paint pipeline. See
  /// [WidgetsBinding.drawFrame] and [SchedulerBinding.handleDrawFrame].
  persistentCallbacks,

  /// The post-frame callbacks (scheduled by
  /// [WidgetsBinding.addPostFrameCallback]) are currently executing.
  ///
  /// Typically, these callbacks handle cleanup and scheduling of work for the
  /// next frame.
  ///
  /// See [SchedulerBinding.handleDrawFrame].
  postFrameCallbacks,
}

/// Scheduler for running the following:
///
/// * _Transient callbacks_, triggered by the system's [Window.onBeginFrame]
///   callback, for synchronizing the application's behavior to the system's
///   display. For example, [Ticker]s and [AnimationController]s trigger from
///   these.
///
/// * _Persistent callbacks_, triggered by the system's [Window.onDrawFrame]
///   callback, for updating the system's display after transient callbacks have
///   executed. For example, the rendering layer uses this to drive its
///   rendering pipeline.
///
/// * _Post-frame callbacks_, which are run after persistent callbacks, just
///   before returning from the [Window.onDrawFrame] callback.
///
/// * Non-rendering tasks, to be run between frames. These are given a
///   priority and are executed in priority order according to a
///   [schedulingStrategy].
abstract class SchedulerBinding extends BindingBase with ServicesBinding {
  // This class is intended to be used as a mixin, and should not be
  // extended directly.
  factory SchedulerBinding._() => null;

  @override
  void initInstances() {
    super.initInstances();
    _instance = this;
    ui.window.onBeginFrame = _handleBeginFrame;
    ui.window.onDrawFrame = _handleDrawFrame;
    SystemChannels.lifecycle.setMessageHandler(_handleLifecycleMessage);
  }

  /// The current [SchedulerBinding], if one has been created.
  static SchedulerBinding get instance => _instance;
  static SchedulerBinding _instance;

  @override
  void initServiceExtensions() {
    super.initServiceExtensions();
    registerNumericServiceExtension(
      name: 'timeDilation',
      getter: () async => timeDilation,
      setter: (double value) async {
        timeDilation = value;
      }
    );
  }

  /// Whether the application is visible, and if so, whether it is currently
  /// interactive.
  ///
  /// This is set by [handleAppLifecycleStateChanged] when the
  /// [SystemChannels.lifecycle] notification is dispatched.
  ///
  /// The preferred way to watch for changes to this value is using
  /// [WidgetsBindingObserver.didChangeAppLifecycleState].
  AppLifecycleState get lifecycleState => _lifecycleState;
  AppLifecycleState _lifecycleState;

  /// Called when the application lifecycle state changes.
  ///
  /// Notifies all the observers using
  /// [WidgetsBindingObserver.didChangeAppLifecycleState].
  ///
  /// This method exposes notifications from [SystemChannels.lifecycle].
  @protected
  @mustCallSuper
  void handleAppLifecycleStateChanged(AppLifecycleState state) {
    assert(state != null);
    _lifecycleState = state;
    switch (state) {
      case AppLifecycleState.resumed:
      case AppLifecycleState.inactive:
        _setFramesEnabledState(true);
        break;
      case AppLifecycleState.paused:
      case AppLifecycleState.suspending:
        _setFramesEnabledState(false);
        break;
    }
  }

  Future<String> _handleLifecycleMessage(String message) {
    handleAppLifecycleStateChanged(_parseAppLifecycleMessage(message));
    return null;
  }

  static AppLifecycleState _parseAppLifecycleMessage(String message) {
    switch (message) {
      case 'AppLifecycleState.paused':
        return AppLifecycleState.paused;
      case 'AppLifecycleState.resumed':
        return AppLifecycleState.resumed;
      case 'AppLifecycleState.inactive':
        return AppLifecycleState.inactive;
      case 'AppLifecycleState.suspending':
        return AppLifecycleState.suspending;
    }
    return null;
  }

  /// The strategy to use when deciding whether to run a task or not.
  ///
  /// Defaults to [defaultSchedulingStrategy].
  SchedulingStrategy schedulingStrategy = defaultSchedulingStrategy;

  static int _taskSorter (_TaskEntry<dynamic> e1, _TaskEntry<dynamic> e2) {
    return -e1.priority.compareTo(e2.priority);
  }
  final PriorityQueue<_TaskEntry<dynamic>> _taskQueue = new HeapPriorityQueue<_TaskEntry<dynamic>>(_taskSorter);

  /// Schedules the given `task` with the given `priority` and returns a
  /// [Future] that completes to the `task`'s eventual return value.
  ///
  /// The `debugLabel` and `flow` are used to report the task to the [Timeline],
  /// for use when profiling.
  ///
  /// ## Processing model
  ///
  /// Tasks will be executed between frames, in priority order,
  /// excluding tasks that are skipped by the current
  /// [schedulingStrategy]. Tasks should be short (as in, up to a
  /// millisecond), so as to not cause the regular frame callbacks to
  /// get delayed.
  ///
  /// If an animation is running, including, for instance, a [ProgressIndicator]
  /// indicating that there are pending tasks, then tasks with a priority below
  /// [Priority.animation] won't run (at least, not with the
  /// [defaultSchedulingStrategy]; this can be configured using
  /// [schedulingStrategy]).
  Future<T> scheduleTask<T>(TaskCallback<T> task, Priority priority, {
    String debugLabel,
    Flow flow,
  }) {
    final bool isFirstTask = _taskQueue.isEmpty;
    final _TaskEntry<T> entry = new _TaskEntry<T>(
      task,
      priority.value,
      debugLabel,
      flow,
    );
    _taskQueue.add(entry);
    if (isFirstTask && !locked)
      _ensureEventLoopCallback();
    return entry.completer.future;
  }

  @override
  void unlocked() {
    super.unlocked();
    if (_taskQueue.isNotEmpty)
      _ensureEventLoopCallback();
  }

  // Whether this scheduler already requested to be called from the event loop.
  bool _hasRequestedAnEventLoopCallback = false;

  // Ensures that the scheduler services a task scheduled by [scheduleTask].
  void _ensureEventLoopCallback() {
    assert(!locked);
    assert(_taskQueue.isNotEmpty);
    if (_hasRequestedAnEventLoopCallback)
      return;
    _hasRequestedAnEventLoopCallback = true;
    Timer.run(_runTasks);
  }

  // Scheduled by _ensureEventLoopCallback.
  void _runTasks() {
    _hasRequestedAnEventLoopCallback = false;
    if (handleEventLoopCallback())
      _ensureEventLoopCallback(); // runs next task when there's time
  }

  /// Execute the highest-priority task, if it is of a high enough priority.
  ///
  /// Returns true if a task was executed and there are other tasks remaining
  /// (even if they are not high-enough priority).
  ///
  /// Returns false if no task was executed, which can occur if there are no
  /// tasks scheduled, if the scheduler is [locked], or if the highest-priority
  /// task is of too low a priority given the current [schedulingStrategy].
  ///
  /// Also returns false if there are no tasks remaining.
  @visibleForTesting
  bool handleEventLoopCallback() {
    if (_taskQueue.isEmpty || locked)
      return false;
    final _TaskEntry<dynamic> entry = _taskQueue.first;
    if (schedulingStrategy(priority: entry.priority, scheduler: this)) {
      try {
        _taskQueue.removeFirst();
        entry.run();
      } catch (exception, exceptionStack) {
        StackTrace callbackStack;
        assert(() {
          callbackStack = entry.debugStack;
          return true;
        }());
        FlutterError.reportError(new FlutterErrorDetails(
          exception: exception,
          stack: exceptionStack,
          library: 'scheduler library',
          context: 'during a task callback',
          informationCollector: (callbackStack == null) ? null : (StringBuffer information) {
            information.writeln(
              '\nThis exception was thrown in the context of a task callback. '
              'When the task callback was _registered_ (as opposed to when the '
              'exception was thrown), this was the stack:'
            );
            FlutterError.defaultStackFilter(callbackStack.toString().trimRight().split('\n')).forEach(information.writeln);
          }
        ));
      }
      return _taskQueue.isNotEmpty;
    }
    return false;
  }

  int _nextFrameCallbackId = 0; // positive
  Map<int, _FrameCallbackEntry> _transientCallbacks = <int, _FrameCallbackEntry>{};
  final Set<int> _removedIds = new HashSet<int>();

  /// The current number of transient frame callbacks scheduled.
  ///
  /// This is reset to zero just before all the currently scheduled
  /// transient callbacks are called, at the start of a frame.
  ///
  /// This number is primarily exposed so that tests can verify that
  /// there are no unexpected transient callbacks still registered
  /// after a test's resources have been gracefully disposed.
  int get transientCallbackCount => _transientCallbacks.length;

  /// Schedules the given transient frame callback.
  ///
  /// Adds the given callback to the list of frame callbacks and ensures that a
  /// frame is scheduled.
  ///
  /// If this is a one-off registration, ignore the `rescheduling` argument.
  ///
  /// If this is a callback that will be reregistered each time it fires, then
  /// when you reregister the callback, set the `rescheduling` argument to true.
  /// This has no effect in release builds, but in debug builds, it ensures that
  /// the stack trace that is stored for this callback is the original stack
  /// trace for when the callback was _first_ registered, rather than the stack
  /// trace for when the callback is reregistered. This makes it easier to track
  /// down the original reason that a particular callback was called. If
  /// `rescheduling` is true, the call must be in the context of a frame
  /// callback.
  ///
  /// Callbacks registered with this method can be canceled using
  /// [cancelFrameCallbackWithId].
  int scheduleFrameCallback(FrameCallback callback, { bool rescheduling: false }) {
    scheduleFrame();
    _nextFrameCallbackId += 1;
    _transientCallbacks[_nextFrameCallbackId] = new _FrameCallbackEntry(callback, rescheduling: rescheduling);
    return _nextFrameCallbackId;
  }

  /// Cancels the transient frame callback with the given [id].
  ///
  /// Removes the given callback from the list of frame callbacks. If a frame
  /// has been requested, this does not also cancel that request.
  ///
  /// Transient frame callbacks are those registered using
  /// [scheduleFrameCallback].
  void cancelFrameCallbackWithId(int id) {
    assert(id > 0);
    _transientCallbacks.remove(id);
    _removedIds.add(id);
  }

  /// Asserts that there are no registered transient callbacks; if
  /// there are, prints their locations and throws an exception.
  ///
  /// A transient frame callback is one that was registered with
  /// [scheduleFrameCallback].
  ///
  /// This is expected to be called at the end of tests (the
  /// flutter_test framework does it automatically in normal cases).
  ///
  /// Call this method when you expect there to be no transient
  /// callbacks registered, in an assert statement with a message that
  /// you want printed when a transient callback is registered:
  ///
  /// ```dart
  /// assert(SchedulerBinding.instance.debugAssertNoTransientCallbacks(
  ///   'A leak of transient callbacks was detected while doing foo.'
  /// ));
  /// ```
  ///
  /// Does nothing if asserts are disabled. Always returns true.
  bool debugAssertNoTransientCallbacks(String reason) {
    assert(() {
      if (transientCallbackCount > 0) {
        // We cache the values so that we can produce them later
        // even if the information collector is called after
        // the problem has been resolved.
        final int count = transientCallbackCount;
        final Map<int, _FrameCallbackEntry> callbacks = new Map<int, _FrameCallbackEntry>.from(_transientCallbacks);
        FlutterError.reportError(new FlutterErrorDetails(
          exception: reason,
          library: 'scheduler library',
          informationCollector: (StringBuffer information) {
            if (count == 1) {
              information.writeln(
                'There was one transient callback left. '
                'The stack trace for when it was registered is as follows:'
              );
            } else {
              information.writeln(
                'There were $count transient callbacks left. '
                'The stack traces for when they were registered are as follows:'
              );
            }
            for (int id in callbacks.keys) {
              final _FrameCallbackEntry entry = callbacks[id];
              information.writeln('── callback $id ──');
              FlutterError.defaultStackFilter(entry.debugStack.toString().trimRight().split('\n')).forEach(information.writeln);
            }
          }
        ));
      }
      return true;
    }());
    return true;
  }

  /// Prints the stack for where the current transient callback was registered.
  ///
  /// A transient frame callback is one that was registered with
  /// [scheduleFrameCallback].
  ///
  /// When called in debug more and in the context of a transient callback, this
  /// function prints the stack trace from where the current transient callback
  /// was registered (i.e. where it first called [scheduleFrameCallback]).
  ///
  /// When called in debug mode in other contexts, it prints a message saying
  /// that this function was not called in the context a transient callback.
  ///
  /// In release mode, this function does nothing.
  ///
  /// To call this function, use the following code:
  ///
  /// ```dart
  ///   SchedulerBinding.debugPrintTransientCallbackRegistrationStack();
  /// ```
  static void debugPrintTransientCallbackRegistrationStack() {
    assert(() {
      if (_FrameCallbackEntry.debugCurrentCallbackStack != null) {
        debugPrint('When the current transient callback was registered, this was the stack:');
        debugPrint(
          FlutterError.defaultStackFilter(
            _FrameCallbackEntry.debugCurrentCallbackStack.toString().trimRight().split('\n')
          ).join('\n')
        );
      } else {
        debugPrint('No transient callback is currently executing.');
      }
      return true;
    }());
  }

  final List<FrameCallback> _persistentCallbacks = <FrameCallback>[];

  /// Adds a persistent frame callback.
  ///
  /// Persistent callbacks are called after transient
  /// (non-persistent) frame callbacks.
  ///
  /// Does *not* request a new frame. Conceptually, persistent frame
  /// callbacks are observers of "begin frame" events. Since they are
  /// executed after the transient frame callbacks they can drive the
  /// rendering pipeline.
  ///
  /// Persistent frame callbacks cannot be unregistered. Once registered, they
  /// are called for every frame for the lifetime of the application.
  void addPersistentFrameCallback(FrameCallback callback) {
    _persistentCallbacks.add(callback);
  }

  final List<FrameCallback> _postFrameCallbacks = <FrameCallback>[];

  /// Schedule a callback for the end of this frame.
  ///
  /// Does *not* request a new frame.
  ///
  /// This callback is run during a frame, just after the persistent
  /// frame callbacks (which is when the main rendering pipeline has
  /// been flushed). If a frame is in progress and post-frame
  /// callbacks haven't been executed yet, then the registered
  /// callback is still executed during the frame. Otherwise, the
  /// registered callback is executed during the next frame.
  ///
  /// The callbacks are executed in the order in which they have been
  /// added.
  ///
  /// Post-frame callbacks cannot be unregistered. They are called exactly once.
  ///
  /// See also:
  ///
  ///  * [scheduleFrameCallback], which registers a callback for the start of
  ///    the next frame.
  void addPostFrameCallback(FrameCallback callback) {
    _postFrameCallbacks.add(callback);
  }

  Completer<Null> _nextFrameCompleter;

  /// Returns a Future that completes after the frame completes.
  ///
  /// If this is called between frames, a frame is immediately scheduled if
  /// necessary. If this is called during a frame, the Future completes after
  /// the current frame.
  ///
  /// If the device's screen is currently turned off, this may wait a very long
  /// time, since frames are not scheduled while the device's screen is turned
  /// off.
  Future<Null> get endOfFrame {
    if (_nextFrameCompleter == null) {
      if (schedulerPhase == SchedulerPhase.idle)
        scheduleFrame();
      _nextFrameCompleter = new Completer<Null>();
      addPostFrameCallback((Duration timeStamp) {
        _nextFrameCompleter.complete();
        _nextFrameCompleter = null;
      });
    }
    return _nextFrameCompleter.future;
  }

  /// Whether this scheduler has requested that [handleBeginFrame] be called soon.
  bool get hasScheduledFrame => _hasScheduledFrame;
  bool _hasScheduledFrame = false;

  /// The phase that the scheduler is currently operating under.
  SchedulerPhase get schedulerPhase => _schedulerPhase;
  SchedulerPhase _schedulerPhase = SchedulerPhase.idle;

  /// Whether frames are currently being scheduled when [scheduleFrame] is called.
  ///
  /// This value depends on the value of the [lifecycleState].
  bool get framesEnabled => _framesEnabled;

  bool _framesEnabled = true;
  void _setFramesEnabledState(bool enabled) {
    if (_framesEnabled == enabled)
      return;
    _framesEnabled = enabled;
    if (enabled)
      scheduleFrame();
  }

  /// Schedules a new frame using [scheduleFrame] if this object is not
  /// currently producing a frame.
  ///
  /// Calling this method ensures that [handleDrawFrame] will eventually be
  /// called, unless it's already in progress.
  ///
  /// This has no effect if [schedulerPhase] is
  /// [SchedulerPhase.transientCallbacks] or [SchedulerPhase.midFrameMicrotasks]
  /// (because a frame is already being prepared in that case), or
  /// [SchedulerPhase.persistentCallbacks] (because a frame is actively being
  /// rendered in that case). It will schedule a frame if the [schedulerPhase]
  /// is [SchedulerPhase.idle] (in between frames) or
  /// [SchedulerPhase.postFrameCallbacks] (after a frame).
  void ensureVisualUpdate() {
    switch (schedulerPhase) {
      case SchedulerPhase.idle:
      case SchedulerPhase.postFrameCallbacks:
        scheduleFrame();
        return;
      case SchedulerPhase.transientCallbacks:
      case SchedulerPhase.midFrameMicrotasks:
      case SchedulerPhase.persistentCallbacks:
        return;
    }
  }

  /// If necessary, schedules a new frame by calling
  /// [Window.scheduleFrame].
  ///
  /// After this is called, the engine will (eventually) call
  /// [handleBeginFrame]. (This call might be delayed, e.g. if the device's
  /// screen is turned off it will typically be delayed until the screen is on
  /// and the application is visible.) Calling this during a frame forces
  /// another frame to be scheduled, even if the current frame has not yet
  /// completed.
  ///
  /// Scheduled frames are serviced when triggered by a "Vsync" signal provided
  /// by the operating system. The "Vsync" signal, or vertical synchronization
  /// signal, was historically related to the display refresh, at a time when
  /// hardware physically moved a beam of electrons vertically between updates
  /// of the display. The operation of contemporary hardware is somewhat more
  /// subtle and complicated, but the conceptual "Vsync" refresh signal continue
  /// to be used to indicate when applications should update their rendering.
  ///
  /// To have a stack trace printed to the console any time this function
  /// schedules a frame, set [debugPrintScheduleFrameStacks] to true.
  ///
  /// See also:
  ///
  ///  * [scheduleForcedFrame], which ignores the [lifecycleState] when
  ///    scheduling a frame.
  ///  * [scheduleWarmUpFrame], which ignores the "Vsync" signal entirely and
  ///    triggers a frame immediately.
  void scheduleFrame() {
    if (_hasScheduledFrame || !_framesEnabled)
      return;
    assert(() {
      if (debugPrintScheduleFrameStacks)
        debugPrintStack(label: 'scheduleFrame() called. Current phase is $schedulerPhase.');
      return true;
    }());
    ui.window.scheduleFrame();
    _hasScheduledFrame = true;
  }

  /// Schedules a new frame by calling [Window.scheduleFrame].
  ///
  /// After this is called, the engine will call [handleBeginFrame], even if
  /// frames would normally not be scheduled by [scheduleFrame] (e.g. even if
  /// the device's screen is turned off).
  ///
  /// The framework uses this to force a frame to be rendered at the correct
  /// size when the phone is rotated, so that a correctly-sized rendering is
  /// available when the screen is turned back on.
  ///
  /// To have a stack trace printed to the console any time this function
  /// schedules a frame, set [debugPrintScheduleFrameStacks] to true.
  ///
  /// Prefer using [scheduleFrame] unless it is imperative that a frame be
  /// scheduled immediately, since using [scheduleForceFrame] will cause
  /// significantly higher battery usage when the device should be idle.
  ///
  /// Consider using [scheduleWarmUpFrame] instead if the goal is to update the
  /// rendering as soon as possible (e.g. at application startup).
  void scheduleForcedFrame() {
    if (_hasScheduledFrame)
      return;
    assert(() {
      if (debugPrintScheduleFrameStacks)
        debugPrintStack(label: 'scheduleForcedFrame() called. Current phase is $schedulerPhase.');
      return true;
    }());
    ui.window.scheduleFrame();
    _hasScheduledFrame = true;
  }

  bool _warmUpFrame = false;

  /// Schedule a frame to run as soon as possible, rather than waiting for
  /// the engine to request a frame in response to a system "Vsync" signal.
  ///
  /// This is used during application startup so that the first frame (which is
  /// likely to be quite expensive) gets a few extra milliseconds to run.
  ///
  /// Locks events dispatching until the scheduled frame has completed.
  ///
  /// If a frame has already been scheduled with [scheduleFrame] or
  /// [scheduleForcedFrame], this call may delay that frame.
  ///
  /// If any scheduled frame has already begun or if another
  /// [scheduleWarmUpFrame] was already called, this call will be ignored.
  ///
  /// Prefer [scheduleFrame] to update the display in normal operation.
  void scheduleWarmUpFrame() {
    if (_warmUpFrame || schedulerPhase != SchedulerPhase.idle)
      return;

    _warmUpFrame = true;
    Timeline.startSync('Warm-up frame');
    final bool hadScheduledFrame = _hasScheduledFrame;
    // We use timers here to ensure that microtasks flush in between.
    Timer.run(() {
      assert(_warmUpFrame);
      handleBeginFrame(null);
    });
    Timer.run(() {
      assert(_warmUpFrame);
      handleDrawFrame();
      // We call resetEpoch after this frame so that, in the hot reload case,
      // the very next frame pretends to have occurred immediately after this
      // warm-up frame. The warm-up frame's timestamp will typically be far in
      // the past (the time of the last real frame), so if we didn't reset the
      // epoch we would see a sudden jump from the old time in the warm-up frame
      // to the new time in the "real" frame. The biggest problem with this is
      // that implicit animations end up being triggered at the old time and
      // then skipping every frame and finishing in the new time.
      resetEpoch();
      _warmUpFrame = false;
      if (hadScheduledFrame)
        scheduleFrame();
    });

    // Lock events so touch events etc don't insert themselves until the
    // scheduled frame has finished.
    lockEvents(() async {
      await endOfFrame;
      Timeline.finishSync();
    });
  }

  Duration _firstRawTimeStampInEpoch;
  Duration _epochStart = Duration.ZERO;
  Duration _lastRawTimeStamp = Duration.ZERO;

  /// Prepares the scheduler for a non-monotonic change to how time stamps are
  /// calculated.
  ///
  /// Callbacks received from the scheduler assume that their time stamps are
  /// monotonically increasing. The raw time stamp passed to [handleBeginFrame]
  /// is monotonic, but the scheduler might adjust those time stamps to provide
  /// [timeDilation]. Without careful handling, these adjusts could cause time
  /// to appear to run backwards.
  ///
  /// The [resetEpoch] function ensures that the time stamps are monotonic by
  /// resetting the base time stamp used for future time stamp adjustments to the
  /// current value. For example, if the [timeDilation] decreases, rather than
  /// scaling down the [Duration] since the beginning of time, [resetEpoch] will
  /// ensure that we only scale down the duration since [resetEpoch] was called.
  ///
  /// Setting [timeDilation] calls [resetEpoch] automatically. You don't need to
  /// call [resetEpoch] yourself.
  void resetEpoch() {
    _epochStart = _adjustForEpoch(_lastRawTimeStamp);
    _firstRawTimeStampInEpoch = null;
  }

  /// Adjusts the given time stamp into the current epoch.
  ///
  /// This both offsets the time stamp to account for when the epoch started
  /// (both in raw time and in the epoch's own time line) and scales the time
  /// stamp to reflect the time dilation in the current epoch.
  ///
  /// These mechanisms together combine to ensure that the durations we give
  /// during frame callbacks are monotonically increasing.
  Duration _adjustForEpoch(Duration rawTimeStamp) {
    final Duration rawDurationSinceEpoch = _firstRawTimeStampInEpoch == null ? Duration.ZERO : rawTimeStamp - _firstRawTimeStampInEpoch;
    return new Duration(microseconds: (rawDurationSinceEpoch.inMicroseconds / timeDilation).round() + _epochStart.inMicroseconds);
  }

  /// The time stamp for the frame currently being processed.
  ///
  /// This is only valid while [handleBeginFrame] is running, i.e. while a frame
  /// is being produced.
  Duration get currentFrameTimeStamp {
    assert(_currentFrameTimeStamp != null);
    return _currentFrameTimeStamp;
  }
  Duration _currentFrameTimeStamp;

  int _profileFrameNumber = 0;
  final Stopwatch _profileFrameStopwatch = new Stopwatch();
  String _debugBanner;
  bool _ignoreNextEngineDrawFrame = false;

  void _handleBeginFrame(Duration rawTimeStamp) {
    if (_warmUpFrame) {
      assert(!_ignoreNextEngineDrawFrame);
      _ignoreNextEngineDrawFrame = true;
      return;
    }
    handleBeginFrame(rawTimeStamp);
  }

  void _handleDrawFrame() {
    if (_ignoreNextEngineDrawFrame) {
      _ignoreNextEngineDrawFrame = false;
      return;
    }
    handleDrawFrame();
  }

  /// Called by the engine to prepare the framework to produce a new frame.
  ///
  /// This function calls all the transient frame callbacks registered by
  /// [scheduleFrameCallback]. It then returns, any scheduled microtasks are run
  /// (e.g. handlers for any [Future]s resolved by transient frame callbacks),
  /// and [handleDrawFrame] is called to continue the frame.
  ///
  /// If the given time stamp is null, the time stamp from the last frame is
  /// reused.
  ///
  /// To have a banner shown at the start of every frame in debug mode, set
  /// [debugPrintBeginFrameBanner] to true. The banner will be printed to the
  /// console using [debugPrint] and will contain the frame number (which
  /// increments by one for each frame), and the time stamp of the frame. If the
  /// given time stamp was null, then the string "warm-up frame" is shown
  /// instead of the time stamp. This allows frames eagerly pushed by the
  /// framework to be distinguished from those requested by the engine in
  /// response to the "Vsync" signal from the operating system.
  ///
  /// You can also show a banner at the end of every frame by setting
  /// [debugPrintEndFrameBanner] to true. This allows you to distinguish log
  /// statements printed during a frame from those printed between frames (e.g.
  /// in response to events or timers).
  void handleBeginFrame(Duration rawTimeStamp) {
    Timeline.startSync('Frame', arguments: timelineWhitelistArguments);
    _firstRawTimeStampInEpoch ??= rawTimeStamp;
    _currentFrameTimeStamp = _adjustForEpoch(rawTimeStamp ?? _lastRawTimeStamp);
    if (rawTimeStamp != null)
      _lastRawTimeStamp = rawTimeStamp;

    profile(() {
      _profileFrameNumber += 1;
      _profileFrameStopwatch.reset();
      _profileFrameStopwatch.start();
    });

    assert(() {
      if (debugPrintBeginFrameBanner || debugPrintEndFrameBanner) {
        final StringBuffer frameTimeStampDescription = new StringBuffer();
        if (rawTimeStamp != null) {
          _debugDescribeTimeStamp(_currentFrameTimeStamp, frameTimeStampDescription);
        } else {
          frameTimeStampDescription.write('(warm-up frame)');
        }
        _debugBanner = '▄▄▄▄▄▄▄▄ Frame ${_profileFrameNumber.toString().padRight(7)}   ${frameTimeStampDescription.toString().padLeft(18)} ▄▄▄▄▄▄▄▄';
        if (debugPrintBeginFrameBanner)
          debugPrint(_debugBanner);
      }
      return true;
    }());

    assert(schedulerPhase == SchedulerPhase.idle);
    _hasScheduledFrame = false;
    try {
      // TRANSIENT FRAME CALLBACKS
      Timeline.startSync('Animate', arguments: timelineWhitelistArguments);
      _schedulerPhase = SchedulerPhase.transientCallbacks;
      final Map<int, _FrameCallbackEntry> callbacks = _transientCallbacks;
      _transientCallbacks = <int, _FrameCallbackEntry>{};
      callbacks.forEach((int id, _FrameCallbackEntry callbackEntry) {
        if (!_removedIds.contains(id))
          _invokeFrameCallback(callbackEntry.callback, _currentFrameTimeStamp, callbackEntry.debugStack);
      });
      _removedIds.clear();
    } finally {
      _schedulerPhase = SchedulerPhase.midFrameMicrotasks;
    }
  }

  /// Called by the engine to produce a new frame.
  ///
  /// This method is called immediately after [handleBeginFrame]. It calls all
  /// the callbacks registered by [addPersistentFrameCallback], which typically
  /// drive the rendering pipeline, and then calls the callbacks registered by
  /// [addPostFrameCallback].
  ///
  /// See [handleBeginFrame] for a discussion about debugging hooks that may be
  /// useful when working with frame callbacks.
  void handleDrawFrame() {
    assert(_schedulerPhase == SchedulerPhase.midFrameMicrotasks);
    Timeline.finishSync(); // end the "Animate" phase
    try {
      // PERSISTENT FRAME CALLBACKS
      _schedulerPhase = SchedulerPhase.persistentCallbacks;
      for (FrameCallback callback in _persistentCallbacks)
        _invokeFrameCallback(callback, _currentFrameTimeStamp);

      // POST-FRAME CALLBACKS
      _schedulerPhase = SchedulerPhase.postFrameCallbacks;
      final List<FrameCallback> localPostFrameCallbacks =
          new List<FrameCallback>.from(_postFrameCallbacks);
      _postFrameCallbacks.clear();
      for (FrameCallback callback in localPostFrameCallbacks)
        _invokeFrameCallback(callback, _currentFrameTimeStamp);
    } finally {
      _schedulerPhase = SchedulerPhase.idle;
      Timeline.finishSync(); // end the Frame
      profile(() {
        _profileFrameStopwatch.stop();
        _profileFramePostEvent();
      });
      assert(() {
        if (debugPrintEndFrameBanner)
          debugPrint('▀' * _debugBanner.length);
        _debugBanner = null;
        return true;
      }());
      _currentFrameTimeStamp = null;
    }
  }

  void _profileFramePostEvent() {
    postEvent('Flutter.Frame', <String, dynamic>{
      'number': _profileFrameNumber,
      'startTime': _currentFrameTimeStamp.inMicroseconds,
      'elapsed': _profileFrameStopwatch.elapsedMicroseconds
    });
  }

  static void _debugDescribeTimeStamp(Duration timeStamp, StringBuffer buffer) {
    if (timeStamp.inDays > 0)
      buffer.write('${timeStamp.inDays}d ');
    if (timeStamp.inHours > 0)
      buffer.write('${timeStamp.inHours - timeStamp.inDays * Duration.HOURS_PER_DAY}h ');
    if (timeStamp.inMinutes > 0)
      buffer.write('${timeStamp.inMinutes - timeStamp.inHours * Duration.MINUTES_PER_HOUR}m ');
    if (timeStamp.inSeconds > 0)
      buffer.write('${timeStamp.inSeconds - timeStamp.inMinutes * Duration.SECONDS_PER_MINUTE}s ');
    buffer.write('${timeStamp.inMilliseconds - timeStamp.inSeconds * Duration.MILLISECONDS_PER_SECOND}');
    final int microseconds = timeStamp.inMicroseconds - timeStamp.inMilliseconds * Duration.MICROSECONDS_PER_MILLISECOND;
    if (microseconds > 0)
      buffer.write('.${microseconds.toString().padLeft(3, "0")}');
    buffer.write('ms');
  }

  // Calls the given [callback] with [timestamp] as argument.
  //
  // Wraps the callback in a try/catch and forwards any error to
  // [debugSchedulerExceptionHandler], if set. If not set, then simply prints
  // the error.
  void _invokeFrameCallback(FrameCallback callback, Duration timeStamp, [ StackTrace callbackStack ]) {
    assert(callback != null);
    assert(_FrameCallbackEntry.debugCurrentCallbackStack == null);
    assert(() { _FrameCallbackEntry.debugCurrentCallbackStack = callbackStack; return true; }());
    try {
      callback(timeStamp);
    } catch (exception, exceptionStack) {
      FlutterError.reportError(new FlutterErrorDetails(
        exception: exception,
        stack: exceptionStack,
        library: 'scheduler library',
        context: 'during a scheduler callback',
        informationCollector: (callbackStack == null) ? null : (StringBuffer information) {
          information.writeln(
            '\nThis exception was thrown in the context of a scheduler callback. '
            'When the scheduler callback was _registered_ (as opposed to when the '
            'exception was thrown), this was the stack:'
          );
          FlutterError.defaultStackFilter(callbackStack.toString().trimRight().split('\n')).forEach(information.writeln);
        }
      ));
    }
    assert(() { _FrameCallbackEntry.debugCurrentCallbackStack = null; return true; }());
  }
}

/// The default [SchedulingStrategy] for [SchedulerBinding.schedulingStrategy].
///
/// If there are any frame callbacks registered, only runs tasks with
/// a [Priority] of [Priority.animation] or higher. Otherwise, runs
/// all tasks.
bool defaultSchedulingStrategy({ int priority, SchedulerBinding scheduler }) {
  if (scheduler.transientCallbackCount > 0)
    return priority >= Priority.animation.value;
  return true;
}