1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:async';
import 'dart:collection';
import 'dart:developer';
import 'package:flutter/foundation.dart';
import 'package:flutter/rendering.dart';
import 'debug.dart';
import 'focus_manager.dart';
export 'dart:ui' show hashValues, hashList;
export 'package:flutter/foundation.dart' show
immutable,
mustCallSuper,
optionalTypeArgs,
protected,
required,
visibleForTesting;
export 'package:flutter/foundation.dart' show FlutterError, ErrorSummary, ErrorDescription, ErrorHint, debugPrint, debugPrintStack;
export 'package:flutter/foundation.dart' show VoidCallback, ValueChanged, ValueGetter, ValueSetter;
export 'package:flutter/foundation.dart' show DiagnosticsNode, DiagnosticLevel;
export 'package:flutter/foundation.dart' show Key, LocalKey, ValueKey;
export 'package:flutter/rendering.dart' show RenderObject, RenderBox, debugDumpRenderTree, debugDumpLayerTree;
// Examples can assume:
// BuildContext context;
// void setState(VoidCallback fn) { }
// Examples can assume:
// abstract class RenderFrogJar extends RenderObject { }
// abstract class FrogJar extends RenderObjectWidget { }
// abstract class FrogJarParentData extends ParentData { Size size; }
// KEYS
/// A key that is only equal to itself.
///
/// This cannot be created with a const constructor because that implies that
/// all instantiated keys would be the same instance and therefore not be unique.
class UniqueKey extends LocalKey {
/// Creates a key that is equal only to itself.
///
/// The key cannot be created with a const constructor because that implies
/// that all instantiated keys would be the same instance and therefore not
/// be unique.
// ignore: prefer_const_constructors_in_immutables , never use const for this class
UniqueKey();
@override
String toString() => '[#${shortHash(this)}]';
}
/// A key that takes its identity from the object used as its value.
///
/// Used to tie the identity of a widget to the identity of an object used to
/// generate that widget.
///
/// See also:
///
/// * [Key], the base class for all keys.
/// * The discussion at [Widget.key] for more information about how widgets use
/// keys.
class ObjectKey extends LocalKey {
/// Creates a key that uses [identical] on [value] for its [operator==].
const ObjectKey(this.value);
/// The object whose identity is used by this key's [operator==].
final Object value;
@override
bool operator ==(Object other) {
if (other.runtimeType != runtimeType)
return false;
return other is ObjectKey
&& identical(other.value, value);
}
@override
int get hashCode => hashValues(runtimeType, identityHashCode(value));
@override
String toString() {
if (runtimeType == ObjectKey)
return '[${describeIdentity(value)}]';
return '[$runtimeType ${describeIdentity(value)}]';
}
}
/// A key that is unique across the entire app.
///
/// Global keys uniquely identify elements. Global keys provide access to other
/// objects that are associated with those elements, such as [BuildContext].
/// For [StatefulWidget]s, global keys also provide access to [State].
///
/// Widgets that have global keys reparent their subtrees when they are moved
/// from one location in the tree to another location in the tree. In order to
/// reparent its subtree, a widget must arrive at its new location in the tree
/// in the same animation frame in which it was removed from its old location in
/// the tree.
///
/// Global keys are relatively expensive. If you don't need any of the features
/// listed above, consider using a [Key], [ValueKey], [ObjectKey], or
/// [UniqueKey] instead.
///
/// You cannot simultaneously include two widgets in the tree with the same
/// global key. Attempting to do so will assert at runtime.
///
/// See also:
///
/// * The discussion at [Widget.key] for more information about how widgets use
/// keys.
@optionalTypeArgs
abstract class GlobalKey<T extends State<StatefulWidget>> extends Key {
/// Creates a [LabeledGlobalKey], which is a [GlobalKey] with a label used for
/// debugging.
///
/// The label is purely for debugging and not used for comparing the identity
/// of the key.
factory GlobalKey({ String debugLabel }) => LabeledGlobalKey<T>(debugLabel);
/// Creates a global key without a label.
///
/// Used by subclasses because the factory constructor shadows the implicit
/// constructor.
const GlobalKey.constructor() : super.empty();
static final Map<GlobalKey, Element> _registry = <GlobalKey, Element>{};
static final Set<Element> _debugIllFatedElements = HashSet<Element>();
static final Map<GlobalKey, Element> _debugReservations = <GlobalKey, Element>{};
void _register(Element element) {
assert(() {
if (_registry.containsKey(this)) {
assert(element.widget != null);
assert(_registry[this].widget != null);
assert(element.widget.runtimeType != _registry[this].widget.runtimeType);
_debugIllFatedElements.add(_registry[this]);
}
return true;
}());
_registry[this] = element;
}
void _unregister(Element element) {
assert(() {
if (_registry.containsKey(this) && _registry[this] != element) {
assert(element.widget != null);
assert(_registry[this].widget != null);
assert(element.widget.runtimeType != _registry[this].widget.runtimeType);
}
return true;
}());
if (_registry[this] == element)
_registry.remove(this);
}
void _debugReserveFor(Element parent) {
assert(() {
assert(parent != null);
if (_debugReservations.containsKey(this) && _debugReservations[this] != parent) {
// Reserving a new parent while the old parent is not attached is ok.
// This can happen when a renderObject detaches and re-attaches to rendering
// tree multiple times.
if (_debugReservations[this].renderObject?.attached == false) {
_debugReservations[this] = parent;
return true;
}
// It's possible for an element to get built multiple times in one
// frame, in which case it'll reserve the same child's key multiple
// times. We catch multiple children of one widget having the same key
// by verifying that an element never steals elements from itself, so we
// don't care to verify that here as well.
final String older = _debugReservations[this].toString();
final String newer = parent.toString();
if (older != newer) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Multiple widgets used the same GlobalKey.'),
ErrorDescription(
'The key $this was used by multiple widgets. The parents of those widgets were:\n'
'- $older\n'
'- $newer\n'
'A GlobalKey can only be specified on one widget at a time in the widget tree.'
),
]);
}
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Multiple widgets used the same GlobalKey.'),
ErrorDescription(
'The key $this was used by multiple widgets. The parents of those widgets were '
'different widgets that both had the following description:\n'
' $parent\n'
'A GlobalKey can only be specified on one widget at a time in the widget tree.'
),
]);
}
_debugReservations[this] = parent;
return true;
}());
}
static void _debugVerifyIllFatedPopulation() {
assert(() {
Map<GlobalKey, Set<Element>> duplicates;
for (final Element element in _debugIllFatedElements) {
if (element._debugLifecycleState != _ElementLifecycle.defunct) {
assert(element != null);
assert(element.widget != null);
assert(element.widget.key != null);
final GlobalKey key = element.widget.key as GlobalKey;
assert(_registry.containsKey(key));
duplicates ??= <GlobalKey, Set<Element>>{};
final Set<Element> elements = duplicates.putIfAbsent(key, () => HashSet<Element>());
elements.add(element);
elements.add(_registry[key]);
}
}
_debugIllFatedElements.clear();
_debugReservations.clear();
if (duplicates != null) {
final List<DiagnosticsNode> information = <DiagnosticsNode>[];
information.add(ErrorSummary('Multiple widgets used the same GlobalKey.'));
for (final GlobalKey key in duplicates.keys) {
final Set<Element> elements = duplicates[key];
// TODO(jacobr): this will omit the '- ' before each widget name and
// use the more standard whitespace style instead. Please let me know
// if the '- ' style is a feature we want to maintain and we can add
// another tree style that supports it. I also see '* ' in some places
// so it would be nice to unify and normalize.
information.add(Element.describeElements('The key $key was used by ${elements.length} widgets', elements));
}
information.add(ErrorDescription('A GlobalKey can only be specified on one widget at a time in the widget tree.'));
throw FlutterError.fromParts(information);
}
return true;
}());
}
Element get _currentElement => _registry[this];
/// The build context in which the widget with this key builds.
///
/// The current context is null if there is no widget in the tree that matches
/// this global key.
BuildContext get currentContext => _currentElement;
/// The widget in the tree that currently has this global key.
///
/// The current widget is null if there is no widget in the tree that matches
/// this global key.
Widget get currentWidget => _currentElement?.widget;
/// The [State] for the widget in the tree that currently has this global key.
///
/// The current state is null if (1) there is no widget in the tree that
/// matches this global key, (2) that widget is not a [StatefulWidget], or the
/// associated [State] object is not a subtype of `T`.
T get currentState {
final Element element = _currentElement;
if (element is StatefulElement) {
final StatefulElement statefulElement = element;
final State state = statefulElement.state;
if (state is T)
return state;
}
return null;
}
}
/// A global key with a debugging label.
///
/// The debug label is useful for documentation and for debugging. The label
/// does not affect the key's identity.
@optionalTypeArgs
class LabeledGlobalKey<T extends State<StatefulWidget>> extends GlobalKey<T> {
/// Creates a global key with a debugging label.
///
/// The label does not affect the key's identity.
// ignore: prefer_const_constructors_in_immutables , never use const for this class
LabeledGlobalKey(this._debugLabel) : super.constructor();
final String _debugLabel;
@override
String toString() {
final String label = _debugLabel != null ? ' $_debugLabel' : '';
if (runtimeType == LabeledGlobalKey)
return '[GlobalKey#${shortHash(this)}$label]';
return '[${describeIdentity(this)}$label]';
}
}
/// A global key that takes its identity from the object used as its value.
///
/// Used to tie the identity of a widget to the identity of an object used to
/// generate that widget.
///
/// If the object is not private, then it is possible that collisions will occur
/// where independent widgets will reuse the same object as their
/// [GlobalObjectKey] value in a different part of the tree, leading to a global
/// key conflict. To avoid this problem, create a private [GlobalObjectKey]
/// subclass, as in:
///
/// ```dart
/// class _MyKey extends GlobalObjectKey {
/// const _MyKey(Object value) : super(value);
/// }
/// ```
///
/// Since the [runtimeType] of the key is part of its identity, this will
/// prevent clashes with other [GlobalObjectKey]s even if they have the same
/// value.
///
/// Any [GlobalObjectKey] created for the same value will match.
@optionalTypeArgs
class GlobalObjectKey<T extends State<StatefulWidget>> extends GlobalKey<T> {
/// Creates a global key that uses [identical] on [value] for its [operator==].
const GlobalObjectKey(this.value) : super.constructor();
/// The object whose identity is used by this key's [operator==].
final Object value;
@override
bool operator ==(Object other) {
if (other.runtimeType != runtimeType)
return false;
return other is GlobalObjectKey<T>
&& identical(other.value, value);
}
@override
int get hashCode => identityHashCode(value);
@override
String toString() {
String selfType = runtimeType.toString();
// const GlobalObjectKey().runtimeType.toString() returns 'GlobalObjectKey<State<StatefulWidget>>'
// because GlobalObjectKey is instantiated to its bounds. To avoid cluttering the output
// we remove the suffix.
const String suffix = '<State<StatefulWidget>>';
if (selfType.endsWith(suffix)) {
selfType = selfType.substring(0, selfType.length - suffix.length);
}
return '[$selfType ${describeIdentity(value)}]';
}
}
/// This class is a work-around for the "is" operator not accepting a variable value as its right operand.
///
/// This class is deprecated. It will be deleted soon.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'TypeMatcher has been deprecated because it is no longer used in framework(only in deprecated methods). '
'This feature was deprecated after v1.12.1.'
)
@optionalTypeArgs
class TypeMatcher<T> {
/// Creates a type matcher for the given type parameter.
const TypeMatcher();
/// Returns true if the given object is of type `T`.
bool check(dynamic object) => object is T;
}
/// Describes the configuration for an [Element].
///
/// Widgets are the central class hierarchy in the Flutter framework. A widget
/// is an immutable description of part of a user interface. Widgets can be
/// inflated into elements, which manage the underlying render tree.
///
/// Widgets themselves have no mutable state (all their fields must be final).
/// If you wish to associate mutable state with a widget, consider using a
/// [StatefulWidget], which creates a [State] object (via
/// [StatefulWidget.createState]) whenever it is inflated into an element and
/// incorporated into the tree.
///
/// A given widget can be included in the tree zero or more times. In particular
/// a given widget can be placed in the tree multiple times. Each time a widget
/// is placed in the tree, it is inflated into an [Element], which means a
/// widget that is incorporated into the tree multiple times will be inflated
/// multiple times.
///
/// The [key] property controls how one widget replaces another widget in the
/// tree. If the [runtimeType] and [key] properties of the two widgets are
/// [operator==], respectively, then the new widget replaces the old widget by
/// updating the underlying element (i.e., by calling [Element.update] with the
/// new widget). Otherwise, the old element is removed from the tree, the new
/// widget is inflated into an element, and the new element is inserted into the
/// tree.
///
/// See also:
///
/// * [StatefulWidget] and [State], for widgets that can build differently
/// several times over their lifetime.
/// * [InheritedWidget], for widgets that introduce ambient state that can
/// be read by descendant widgets.
/// * [StatelessWidget], for widgets that always build the same way given a
/// particular configuration and ambient state.
@immutable
abstract class Widget extends DiagnosticableTree {
/// Initializes [key] for subclasses.
const Widget({ this.key });
/// Controls how one widget replaces another widget in the tree.
///
/// If the [runtimeType] and [key] properties of the two widgets are
/// [operator==], respectively, then the new widget replaces the old widget by
/// updating the underlying element (i.e., by calling [Element.update] with the
/// new widget). Otherwise, the old element is removed from the tree, the new
/// widget is inflated into an element, and the new element is inserted into the
/// tree.
///
/// In addition, using a [GlobalKey] as the widget's [key] allows the element
/// to be moved around the tree (changing parent) without losing state. When a
/// new widget is found (its key and type do not match a previous widget in
/// the same location), but there was a widget with that same global key
/// elsewhere in the tree in the previous frame, then that widget's element is
/// moved to the new location.
///
/// Generally, a widget that is the only child of another widget does not need
/// an explicit key.
///
/// See also:
///
/// * The discussions at [Key] and [GlobalKey].
final Key key;
/// Inflates this configuration to a concrete instance.
///
/// A given widget can be included in the tree zero or more times. In particular
/// a given widget can be placed in the tree multiple times. Each time a widget
/// is placed in the tree, it is inflated into an [Element], which means a
/// widget that is incorporated into the tree multiple times will be inflated
/// multiple times.
@protected
Element createElement();
/// A short, textual description of this widget.
@override
String toStringShort() {
return key == null ? '$runtimeType' : '$runtimeType-$key';
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.defaultDiagnosticsTreeStyle = DiagnosticsTreeStyle.dense;
}
@override
@nonVirtual
bool operator ==(Object other) => super == other;
@override
@nonVirtual
int get hashCode => super.hashCode;
/// Whether the `newWidget` can be used to update an [Element] that currently
/// has the `oldWidget` as its configuration.
///
/// An element that uses a given widget as its configuration can be updated to
/// use another widget as its configuration if, and only if, the two widgets
/// have [runtimeType] and [key] properties that are [operator==].
///
/// If the widgets have no key (their key is null), then they are considered a
/// match if they have the same type, even if their children are completely
/// different.
static bool canUpdate(Widget oldWidget, Widget newWidget) {
return oldWidget.runtimeType == newWidget.runtimeType
&& oldWidget.key == newWidget.key;
}
}
/// A widget that does not require mutable state.
///
/// A stateless widget is a widget that describes part of the user interface by
/// building a constellation of other widgets that describe the user interface
/// more concretely. The building process continues recursively until the
/// description of the user interface is fully concrete (e.g., consists
/// entirely of [RenderObjectWidget]s, which describe concrete [RenderObject]s).
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=wE7khGHVkYY}
///
/// Stateless widget are useful when the part of the user interface you are
/// describing does not depend on anything other than the configuration
/// information in the object itself and the [BuildContext] in which the widget
/// is inflated. For compositions that can change dynamically, e.g. due to
/// having an internal clock-driven state, or depending on some system state,
/// consider using [StatefulWidget].
///
/// ## Performance considerations
///
/// The [build] method of a stateless widget is typically only called in three
/// situations: the first time the widget is inserted in the tree, when the
/// widget's parent changes its configuration, and when an [InheritedWidget] it
/// depends on changes.
///
/// If a widget's parent will regularly change the widget's configuration, or if
/// it depends on inherited widgets that frequently change, then it is important
/// to optimize the performance of the [build] method to maintain a fluid
/// rendering performance.
///
/// There are several techniques one can use to minimize the impact of
/// rebuilding a stateless widget:
///
/// * Minimize the number of nodes transitively created by the build method and
/// any widgets it creates. For example, instead of an elaborate arrangement
/// of [Row]s, [Column]s, [Padding]s, and [SizedBox]es to position a single
/// child in a particularly fancy manner, consider using just an [Align] or a
/// [CustomSingleChildLayout]. Instead of an intricate layering of multiple
/// [Container]s and with [Decoration]s to draw just the right graphical
/// effect, consider a single [CustomPaint] widget.
///
/// * Use `const` widgets where possible, and provide a `const` constructor for
/// the widget so that users of the widget can also do so.
///
/// * Consider refactoring the stateless widget into a stateful widget so that
/// it can use some of the techniques described at [StatefulWidget], such as
/// caching common parts of subtrees and using [GlobalKey]s when changing the
/// tree structure.
///
/// * If the widget is likely to get rebuilt frequently due to the use of
/// [InheritedWidget]s, consider refactoring the stateless widget into
/// multiple widgets, with the parts of the tree that change being pushed to
/// the leaves. For example instead of building a tree with four widgets, the
/// inner-most widget depending on the [Theme], consider factoring out the
/// part of the build function that builds the inner-most widget into its own
/// widget, so that only the inner-most widget needs to be rebuilt when the
/// theme changes.
///
/// {@tool snippet}
///
/// The following is a skeleton of a stateless widget subclass called `GreenFrog`.
///
/// Normally, widgets have more constructor arguments, each of which corresponds
/// to a `final` property.
///
/// ```dart
/// class GreenFrog extends StatelessWidget {
/// const GreenFrog({ Key key }) : super(key: key);
///
/// @override
/// Widget build(BuildContext context) {
/// return Container(color: const Color(0xFF2DBD3A));
/// }
/// }
/// ```
/// {@end-tool}
///
/// {@tool snippet}
///
/// This next example shows the more generic widget `Frog` which can be given
/// a color and a child:
///
/// ```dart
/// class Frog extends StatelessWidget {
/// const Frog({
/// Key key,
/// this.color = const Color(0xFF2DBD3A),
/// this.child,
/// }) : super(key: key);
///
/// final Color color;
/// final Widget child;
///
/// @override
/// Widget build(BuildContext context) {
/// return Container(color: color, child: child);
/// }
/// }
/// ```
/// {@end-tool}
///
/// By convention, widget constructors only use named arguments. Named arguments
/// can be marked as required using [@required]. Also by convention, the first
/// argument is [key], and the last argument is `child`, `children`, or the
/// equivalent.
///
/// See also:
///
/// * [StatefulWidget] and [State], for widgets that can build differently
/// several times over their lifetime.
/// * [InheritedWidget], for widgets that introduce ambient state that can
/// be read by descendant widgets.
abstract class StatelessWidget extends Widget {
/// Initializes [key] for subclasses.
const StatelessWidget({ Key key }) : super(key: key);
/// Creates a [StatelessElement] to manage this widget's location in the tree.
///
/// It is uncommon for subclasses to override this method.
@override
StatelessElement createElement() => StatelessElement(this);
/// Describes the part of the user interface represented by this widget.
///
/// The framework calls this method when this widget is inserted into the
/// tree in a given [BuildContext] and when the dependencies of this widget
/// change (e.g., an [InheritedWidget] referenced by this widget changes).
///
/// The framework replaces the subtree below this widget with the widget
/// returned by this method, either by updating the existing subtree or by
/// removing the subtree and inflating a new subtree, depending on whether the
/// widget returned by this method can update the root of the existing
/// subtree, as determined by calling [Widget.canUpdate].
///
/// Typically implementations return a newly created constellation of widgets
/// that are configured with information from this widget's constructor and
/// from the given [BuildContext].
///
/// The given [BuildContext] contains information about the location in the
/// tree at which this widget is being built. For example, the context
/// provides the set of inherited widgets for this location in the tree. A
/// given widget might be built with multiple different [BuildContext]
/// arguments over time if the widget is moved around the tree or if the
/// widget is inserted into the tree in multiple places at once.
///
/// The implementation of this method must only depend on:
///
/// * the fields of the widget, which themselves must not change over time,
/// and
/// * any ambient state obtained from the `context` using
/// [BuildContext.dependOnInheritedWidgetOfExactType].
///
/// If a widget's [build] method is to depend on anything else, use a
/// [StatefulWidget] instead.
///
/// See also:
///
/// * [StatelessWidget], which contains the discussion on performance considerations.
@protected
Widget build(BuildContext context);
}
/// A widget that has mutable state.
///
/// State is information that (1) can be read synchronously when the widget is
/// built and (2) might change during the lifetime of the widget. It is the
/// responsibility of the widget implementer to ensure that the [State] is
/// promptly notified when such state changes, using [State.setState].
///
/// A stateful widget is a widget that describes part of the user interface by
/// building a constellation of other widgets that describe the user interface
/// more concretely. The building process continues recursively until the
/// description of the user interface is fully concrete (e.g., consists
/// entirely of [RenderObjectWidget]s, which describe concrete [RenderObject]s).
///
/// Stateful widgets are useful when the part of the user interface you are
/// describing can change dynamically, e.g. due to having an internal
/// clock-driven state, or depending on some system state. For compositions that
/// depend only on the configuration information in the object itself and the
/// [BuildContext] in which the widget is inflated, consider using
/// [StatelessWidget].
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=AqCMFXEmf3w}
///
/// [StatefulWidget] instances themselves are immutable and store their mutable
/// state either in separate [State] objects that are created by the
/// [createState] method, or in objects to which that [State] subscribes, for
/// example [Stream] or [ChangeNotifier] objects, to which references are stored
/// in final fields on the [StatefulWidget] itself.
///
/// The framework calls [createState] whenever it inflates a
/// [StatefulWidget], which means that multiple [State] objects might be
/// associated with the same [StatefulWidget] if that widget has been inserted
/// into the tree in multiple places. Similarly, if a [StatefulWidget] is
/// removed from the tree and later inserted in to the tree again, the framework
/// will call [createState] again to create a fresh [State] object, simplifying
/// the lifecycle of [State] objects.
///
/// A [StatefulWidget] keeps the same [State] object when moving from one
/// location in the tree to another if its creator used a [GlobalKey] for its
/// [key]. Because a widget with a [GlobalKey] can be used in at most one
/// location in the tree, a widget that uses a [GlobalKey] has at most one
/// associated element. The framework takes advantage of this property when
/// moving a widget with a global key from one location in the tree to another
/// by grafting the (unique) subtree associated with that widget from the old
/// location to the new location (instead of recreating the subtree at the new
/// location). The [State] objects associated with [StatefulWidget] are grafted
/// along with the rest of the subtree, which means the [State] object is reused
/// (instead of being recreated) in the new location. However, in order to be
/// eligible for grafting, the widget must be inserted into the new location in
/// the same animation frame in which it was removed from the old location.
///
/// ## Performance considerations
///
/// There are two primary categories of [StatefulWidget]s.
///
/// The first is one which allocates resources in [State.initState] and disposes
/// of them in [State.dispose], but which does not depend on [InheritedWidget]s
/// or call [State.setState]. Such widgets are commonly used at the root of an
/// application or page, and communicate with subwidgets via [ChangeNotifier]s,
/// [Stream]s, or other such objects. Stateful widgets following such a pattern
/// are relatively cheap (in terms of CPU and GPU cycles), because they are
/// built once then never update. They can, therefore, have somewhat complicated
/// and deep build methods.
///
/// The second category is widgets that use [State.setState] or depend on
/// [InheritedWidget]s. These will typically rebuild many times during the
/// application's lifetime, and it is therefore important to minimize the impact
/// of rebuilding such a widget. (They may also use [State.initState] or
/// [State.didChangeDependencies] and allocate resources, but the important part
/// is that they rebuild.)
///
/// There are several techniques one can use to minimize the impact of
/// rebuilding a stateful widget:
///
/// * Push the state to the leaves. For example, if your page has a ticking
/// clock, rather than putting the state at the top of the page and
/// rebuilding the entire page each time the clock ticks, create a dedicated
/// clock widget that only updates itself.
///
/// * Minimize the number of nodes transitively created by the build method and
/// any widgets it creates. Ideally, a stateful widget would only create a
/// single widget, and that widget would be a [RenderObjectWidget].
/// (Obviously this isn't always practical, but the closer a widget gets to
/// this ideal, the more efficient it will be.)
///
/// * If a subtree does not change, cache the widget that represents that
/// subtree and re-use it each time it can be used. It is massively more
/// efficient for a widget to be re-used than for a new (but
/// identically-configured) widget to be created. Factoring out the stateful
/// part into a widget that takes a child argument is a common way of doing
/// this.
///
/// * Use `const` widgets where possible. (This is equivalent to caching a
/// widget and re-using it.)
///
/// * Avoid changing the depth of any created subtrees or changing the type of
/// any widgets in the subtree. For example, rather than returning either the
/// child or the child wrapped in an [IgnorePointer], always wrap the child
/// widget in an [IgnorePointer] and control the [IgnorePointer.ignoring]
/// property. This is because changing the depth of the subtree requires
/// rebuilding, laying out, and painting the entire subtree, whereas just
/// changing the property will require the least possible change to the
/// render tree (in the case of [IgnorePointer], for example, no layout or
/// repaint is necessary at all).
///
/// * If the depth must be changed for some reason, consider wrapping the
/// common parts of the subtrees in widgets that have a [GlobalKey] that
/// remains consistent for the life of the stateful widget. (The
/// [KeyedSubtree] widget may be useful for this purpose if no other widget
/// can conveniently be assigned the key.)
///
/// {@tool snippet}
///
/// This is a skeleton of a stateful widget subclass called `YellowBird`.
///
/// In this example. the [State] has no actual state. State is normally
/// represented as private member fields. Also, normally widgets have more
/// constructor arguments, each of which corresponds to a `final` property.
///
/// ```dart
/// class YellowBird extends StatefulWidget {
/// const YellowBird({ Key key }) : super(key: key);
///
/// @override
/// _YellowBirdState createState() => _YellowBirdState();
/// }
///
/// class _YellowBirdState extends State<YellowBird> {
/// @override
/// Widget build(BuildContext context) {
/// return Container(color: const Color(0xFFFFE306));
/// }
/// }
/// ```
/// {@end-tool}
/// {@tool snippet}
///
/// This example shows the more generic widget `Bird` which can be given a
/// color and a child, and which has some internal state with a method that
/// can be called to mutate it:
///
/// ```dart
/// class Bird extends StatefulWidget {
/// const Bird({
/// Key key,
/// this.color = const Color(0xFFFFE306),
/// this.child,
/// }) : super(key: key);
///
/// final Color color;
/// final Widget child;
///
/// _BirdState createState() => _BirdState();
/// }
///
/// class _BirdState extends State<Bird> {
/// double _size = 1.0;
///
/// void grow() {
/// setState(() { _size += 0.1; });
/// }
///
/// @override
/// Widget build(BuildContext context) {
/// return Container(
/// color: widget.color,
/// transform: Matrix4.diagonal3Values(_size, _size, 1.0),
/// child: widget.child,
/// );
/// }
/// }
/// ```
/// {@end-tool}
///
/// By convention, widget constructors only use named arguments. Named arguments
/// can be marked as required using [@required]. Also by convention, the first
/// argument is [key], and the last argument is `child`, `children`, or the
/// equivalent.
///
/// See also:
///
/// * [State], where the logic behind a [StatefulWidget] is hosted.
/// * [StatelessWidget], for widgets that always build the same way given a
/// particular configuration and ambient state.
/// * [InheritedWidget], for widgets that introduce ambient state that can
/// be read by descendant widgets.
abstract class StatefulWidget extends Widget {
/// Initializes [key] for subclasses.
const StatefulWidget({ Key key }) : super(key: key);
/// Creates a [StatefulElement] to manage this widget's location in the tree.
///
/// It is uncommon for subclasses to override this method.
@override
StatefulElement createElement() => StatefulElement(this);
/// Creates the mutable state for this widget at a given location in the tree.
///
/// Subclasses should override this method to return a newly created
/// instance of their associated [State] subclass:
///
/// ```dart
/// @override
/// _MyState createState() => _MyState();
/// ```
///
/// The framework can call this method multiple times over the lifetime of
/// a [StatefulWidget]. For example, if the widget is inserted into the tree
/// in multiple locations, the framework will create a separate [State] object
/// for each location. Similarly, if the widget is removed from the tree and
/// later inserted into the tree again, the framework will call [createState]
/// again to create a fresh [State] object, simplifying the lifecycle of
/// [State] objects.
@protected
State createState();
}
/// Tracks the lifecycle of [State] objects when asserts are enabled.
enum _StateLifecycle {
/// The [State] object has been created. [State.initState] is called at this
/// time.
created,
/// The [State.initState] method has been called but the [State] object is
/// not yet ready to build. [State.didChangeDependencies] is called at this time.
initialized,
/// The [State] object is ready to build and [State.dispose] has not yet been
/// called.
ready,
/// The [State.dispose] method has been called and the [State] object is
/// no longer able to build.
defunct,
}
/// The signature of [State.setState] functions.
typedef StateSetter = void Function(VoidCallback fn);
/// The logic and internal state for a [StatefulWidget].
///
/// State is information that (1) can be read synchronously when the widget is
/// built and (2) might change during the lifetime of the widget. It is the
/// responsibility of the widget implementer to ensure that the [State] is
/// promptly notified when such state changes, using [State.setState].
///
/// [State] objects are created by the framework by calling the
/// [StatefulWidget.createState] method when inflating a [StatefulWidget] to
/// insert it into the tree. Because a given [StatefulWidget] instance can be
/// inflated multiple times (e.g., the widget is incorporated into the tree in
/// multiple places at once), there might be more than one [State] object
/// associated with a given [StatefulWidget] instance. Similarly, if a
/// [StatefulWidget] is removed from the tree and later inserted in to the tree
/// again, the framework will call [StatefulWidget.createState] again to create
/// a fresh [State] object, simplifying the lifecycle of [State] objects.
///
/// [State] objects have the following lifecycle:
///
/// * The framework creates a [State] object by calling
/// [StatefulWidget.createState].
/// * The newly created [State] object is associated with a [BuildContext].
/// This association is permanent: the [State] object will never change its
/// [BuildContext]. However, the [BuildContext] itself can be moved around
/// the tree along with its subtree. At this point, the [State] object is
/// considered [mounted].
/// * The framework calls [initState]. Subclasses of [State] should override
/// [initState] to perform one-time initialization that depends on the
/// [BuildContext] or the widget, which are available as the [context] and
/// [widget] properties, respectively, when the [initState] method is
/// called.
/// * The framework calls [didChangeDependencies]. Subclasses of [State] should
/// override [didChangeDependencies] to perform initialization involving
/// [InheritedWidget]s. If [BuildContext.dependOnInheritedWidgetOfExactType] is
/// called, the [didChangeDependencies] method will be called again if the
/// inherited widgets subsequently change or if the widget moves in the tree.
/// * At this point, the [State] object is fully initialized and the framework
/// might call its [build] method any number of times to obtain a
/// description of the user interface for this subtree. [State] objects can
/// spontaneously request to rebuild their subtree by callings their
/// [setState] method, which indicates that some of their internal state
/// has changed in a way that might impact the user interface in this
/// subtree.
/// * During this time, a parent widget might rebuild and request that this
/// location in the tree update to display a new widget with the same
/// [runtimeType] and [Widget.key]. When this happens, the framework will
/// update the [widget] property to refer to the new widget and then call the
/// [didUpdateWidget] method with the previous widget as an argument. [State]
/// objects should override [didUpdateWidget] to respond to changes in their
/// associated widget (e.g., to start implicit animations). The framework
/// always calls [build] after calling [didUpdateWidget], which means any
/// calls to [setState] in [didUpdateWidget] are redundant.
/// * During development, if a hot reload occurs (whether initiated from the
/// command line `flutter` tool by pressing `r`, or from an IDE), the
/// [reassemble] method is called. This provides an opportunity to
/// reinitialize any data that was prepared in the [initState] method.
/// * If the subtree containing the [State] object is removed from the tree
/// (e.g., because the parent built a widget with a different [runtimeType]
/// or [Widget.key]), the framework calls the [deactivate] method. Subclasses
/// should override this method to clean up any links between this object
/// and other elements in the tree (e.g. if you have provided an ancestor
/// with a pointer to a descendant's [RenderObject]).
/// * At this point, the framework might reinsert this subtree into another
/// part of the tree. If that happens, the framework will ensure that it
/// calls [build] to give the [State] object a chance to adapt to its new
/// location in the tree. If the framework does reinsert this subtree, it
/// will do so before the end of the animation frame in which the subtree was
/// removed from the tree. For this reason, [State] objects can defer
/// releasing most resources until the framework calls their [dispose]
/// method.
/// * If the framework does not reinsert this subtree by the end of the current
/// animation frame, the framework will call [dispose], which indicates that
/// this [State] object will never build again. Subclasses should override
/// this method to release any resources retained by this object (e.g.,
/// stop any active animations).
/// * After the framework calls [dispose], the [State] object is considered
/// unmounted and the [mounted] property is false. It is an error to call
/// [setState] at this point. This stage of the lifecycle is terminal: there
/// is no way to remount a [State] object that has been disposed.
///
/// See also:
///
/// * [StatefulWidget], where the current configuration of a [State] is hosted,
/// and whose documentation has sample code for [State].
/// * [StatelessWidget], for widgets that always build the same way given a
/// particular configuration and ambient state.
/// * [InheritedWidget], for widgets that introduce ambient state that can
/// be read by descendant widgets.
/// * [Widget], for an overview of widgets in general.
@optionalTypeArgs
abstract class State<T extends StatefulWidget> extends Diagnosticable {
/// The current configuration.
///
/// A [State] object's configuration is the corresponding [StatefulWidget]
/// instance. This property is initialized by the framework before calling
/// [initState]. If the parent updates this location in the tree to a new
/// widget with the same [runtimeType] and [Widget.key] as the current
/// configuration, the framework will update this property to refer to the new
/// widget and then call [didUpdateWidget], passing the old configuration as
/// an argument.
T get widget => _widget;
T _widget;
/// The current stage in the lifecycle for this state object.
///
/// This field is used by the framework when asserts are enabled to verify
/// that [State] objects move through their lifecycle in an orderly fashion.
_StateLifecycle _debugLifecycleState = _StateLifecycle.created;
/// Verifies that the [State] that was created is one that expects to be
/// created for that particular [Widget].
bool _debugTypesAreRight(Widget widget) => widget is T;
/// The location in the tree where this widget builds.
///
/// The framework associates [State] objects with a [BuildContext] after
/// creating them with [StatefulWidget.createState] and before calling
/// [initState]. The association is permanent: the [State] object will never
/// change its [BuildContext]. However, the [BuildContext] itself can be moved
/// around the tree.
///
/// After calling [dispose], the framework severs the [State] object's
/// connection with the [BuildContext].
BuildContext get context => _element;
StatefulElement _element;
/// Whether this [State] object is currently in a tree.
///
/// After creating a [State] object and before calling [initState], the
/// framework "mounts" the [State] object by associating it with a
/// [BuildContext]. The [State] object remains mounted until the framework
/// calls [dispose], after which time the framework will never ask the [State]
/// object to [build] again.
///
/// It is an error to call [setState] unless [mounted] is true.
bool get mounted => _element != null;
/// Called when this object is inserted into the tree.
///
/// The framework will call this method exactly once for each [State] object
/// it creates.
///
/// Override this method to perform initialization that depends on the
/// location at which this object was inserted into the tree (i.e., [context])
/// or on the widget used to configure this object (i.e., [widget]).
///
/// {@template flutter.widgets.subscriptions}
/// If a [State]'s [build] method depends on an object that can itself
/// change state, for example a [ChangeNotifier] or [Stream], or some
/// other object to which one can subscribe to receive notifications, then
/// be sure to subscribe and unsubscribe properly in [initState],
/// [didUpdateWidget], and [dispose]:
///
/// * In [initState], subscribe to the object.
/// * In [didUpdateWidget] unsubscribe from the old object and subscribe
/// to the new one if the updated widget configuration requires
/// replacing the object.
/// * In [dispose], unsubscribe from the object.
///
/// {@endtemplate}
///
/// You cannot use [BuildContext.dependOnInheritedWidgetOfExactType] from this
/// method. However, [didChangeDependencies] will be called immediately
/// following this method, and [BuildContext.dependOnInheritedWidgetOfExactType] can
/// be used there.
///
/// If you override this, make sure your method starts with a call to
/// super.initState().
@protected
@mustCallSuper
void initState() {
assert(_debugLifecycleState == _StateLifecycle.created);
}
/// Called whenever the widget configuration changes.
///
/// If the parent widget rebuilds and request that this location in the tree
/// update to display a new widget with the same [runtimeType] and
/// [Widget.key], the framework will update the [widget] property of this
/// [State] object to refer to the new widget and then call this method
/// with the previous widget as an argument.
///
/// Override this method to respond when the [widget] changes (e.g., to start
/// implicit animations).
///
/// The framework always calls [build] after calling [didUpdateWidget], which
/// means any calls to [setState] in [didUpdateWidget] are redundant.
///
/// {@macro flutter.widgets.subscriptions}
///
/// If you override this, make sure your method starts with a call to
/// super.didUpdateWidget(oldWidget).
@mustCallSuper
@protected
void didUpdateWidget(covariant T oldWidget) { }
/// {@macro flutter.widgets.reassemble}
///
/// In addition to this method being invoked, it is guaranteed that the
/// [build] method will be invoked when a reassemble is signaled. Most
/// widgets therefore do not need to do anything in the [reassemble] method.
///
/// See also:
///
/// * [Element.reassemble]
/// * [BindingBase.reassembleApplication]
/// * [Image], which uses this to reload images.
@protected
@mustCallSuper
void reassemble() { }
/// Notify the framework that the internal state of this object has changed.
///
/// Whenever you change the internal state of a [State] object, make the
/// change in a function that you pass to [setState]:
///
/// ```dart
/// setState(() { _myState = newValue });
/// ```
///
/// The provided callback is immediately called synchronously. It must not
/// return a future (the callback cannot be `async`), since then it would be
/// unclear when the state was actually being set.
///
/// Calling [setState] notifies the framework that the internal state of this
/// object has changed in a way that might impact the user interface in this
/// subtree, which causes the framework to schedule a [build] for this [State]
/// object.
///
/// If you just change the state directly without calling [setState], the
/// framework might not schedule a [build] and the user interface for this
/// subtree might not be updated to reflect the new state.
///
/// Generally it is recommended that the `setState` method only be used to
/// wrap the actual changes to the state, not any computation that might be
/// associated with the change. For example, here a value used by the [build]
/// function is incremented, and then the change is written to disk, but only
/// the increment is wrapped in the `setState`:
///
/// ```dart
/// Future<void> _incrementCounter() async {
/// setState(() {
/// _counter++;
/// });
/// Directory directory = await getApplicationDocumentsDirectory();
/// final String dirName = directory.path;
/// await File('$dir/counter.txt').writeAsString('$_counter');
/// }
/// ```
///
/// It is an error to call this method after the framework calls [dispose].
/// You can determine whether it is legal to call this method by checking
/// whether the [mounted] property is true.
@protected
void setState(VoidCallback fn) {
assert(fn != null);
assert(() {
if (_debugLifecycleState == _StateLifecycle.defunct) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('setState() called after dispose(): $this'),
ErrorDescription(
'This error happens if you call setState() on a State object for a widget that '
'no longer appears in the widget tree (e.g., whose parent widget no longer '
'includes the widget in its build). This error can occur when code calls '
'setState() from a timer or an animation callback.'
),
ErrorHint(
'The preferred solution is '
'to cancel the timer or stop listening to the animation in the dispose() '
'callback. Another solution is to check the "mounted" property of this '
'object before calling setState() to ensure the object is still in the '
'tree.'
),
ErrorHint(
'This error might indicate a memory leak if setState() is being called '
'because another object is retaining a reference to this State object '
'after it has been removed from the tree. To avoid memory leaks, '
'consider breaking the reference to this object during dispose().'
),
]);
}
if (_debugLifecycleState == _StateLifecycle.created && !mounted) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('setState() called in constructor: $this'),
ErrorHint(
'This happens when you call setState() on a State object for a widget that '
'hasn\'t been inserted into the widget tree yet. It is not necessary to call '
'setState() in the constructor, since the state is already assumed to be dirty '
'when it is initially created.'
),
]);
}
return true;
}());
final dynamic result = fn() as dynamic;
assert(() {
if (result is Future) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('setState() callback argument returned a Future.'),
ErrorDescription(
'The setState() method on $this was called with a closure or method that '
'returned a Future. Maybe it is marked as "async".'
),
ErrorHint(
'Instead of performing asynchronous work inside a call to setState(), first '
'execute the work (without updating the widget state), and then synchronously '
'update the state inside a call to setState().'
),
]);
}
// We ignore other types of return values so that you can do things like:
// setState(() => x = 3);
return true;
}());
_element.markNeedsBuild();
}
/// Called when this object is removed from the tree.
///
/// The framework calls this method whenever it removes this [State] object
/// from the tree. In some cases, the framework will reinsert the [State]
/// object into another part of the tree (e.g., if the subtree containing this
/// [State] object is grafted from one location in the tree to another). If
/// that happens, the framework will ensure that it calls [build] to give the
/// [State] object a chance to adapt to its new location in the tree. If
/// the framework does reinsert this subtree, it will do so before the end of
/// the animation frame in which the subtree was removed from the tree. For
/// this reason, [State] objects can defer releasing most resources until the
/// framework calls their [dispose] method.
///
/// Subclasses should override this method to clean up any links between
/// this object and other elements in the tree (e.g. if you have provided an
/// ancestor with a pointer to a descendant's [RenderObject]).
///
/// If you override this, make sure to end your method with a call to
/// super.deactivate().
///
/// See also:
///
/// * [dispose], which is called after [deactivate] if the widget is removed
/// from the tree permanently.
@protected
@mustCallSuper
void deactivate() { }
/// Called when this object is removed from the tree permanently.
///
/// The framework calls this method when this [State] object will never
/// build again. After the framework calls [dispose], the [State] object is
/// considered unmounted and the [mounted] property is false. It is an error
/// to call [setState] at this point. This stage of the lifecycle is terminal:
/// there is no way to remount a [State] object that has been disposed.
///
/// Subclasses should override this method to release any resources retained
/// by this object (e.g., stop any active animations).
///
/// {@macro flutter.widgets.subscriptions}
///
/// If you override this, make sure to end your method with a call to
/// super.dispose().
///
/// See also:
///
/// * [deactivate], which is called prior to [dispose].
@protected
@mustCallSuper
void dispose() {
assert(_debugLifecycleState == _StateLifecycle.ready);
assert(() {
_debugLifecycleState = _StateLifecycle.defunct;
return true;
}());
}
/// Describes the part of the user interface represented by this widget.
///
/// The framework calls this method in a number of different situations:
///
/// * After calling [initState].
/// * After calling [didUpdateWidget].
/// * After receiving a call to [setState].
/// * After a dependency of this [State] object changes (e.g., an
/// [InheritedWidget] referenced by the previous [build] changes).
/// * After calling [deactivate] and then reinserting the [State] object into
/// the tree at another location.
///
/// The framework replaces the subtree below this widget with the widget
/// returned by this method, either by updating the existing subtree or by
/// removing the subtree and inflating a new subtree, depending on whether the
/// widget returned by this method can update the root of the existing
/// subtree, as determined by calling [Widget.canUpdate].
///
/// Typically implementations return a newly created constellation of widgets
/// that are configured with information from this widget's constructor, the
/// given [BuildContext], and the internal state of this [State] object.
///
/// The given [BuildContext] contains information about the location in the
/// tree at which this widget is being built. For example, the context
/// provides the set of inherited widgets for this location in the tree. The
/// [BuildContext] argument is always the same as the [context] property of
/// this [State] object and will remain the same for the lifetime of this
/// object. The [BuildContext] argument is provided redundantly here so that
/// this method matches the signature for a [WidgetBuilder].
///
/// ## Design discussion
///
/// ### Why is the [build] method on [State], and not [StatefulWidget]?
///
/// Putting a `Widget build(BuildContext context)` method on [State] rather
/// than putting a `Widget build(BuildContext context, State state)` method
/// on [StatefulWidget] gives developers more flexibility when subclassing
/// [StatefulWidget].
///
/// For example, [AnimatedWidget] is a subclass of [StatefulWidget] that
/// introduces an abstract `Widget build(BuildContext context)` method for its
/// subclasses to implement. If [StatefulWidget] already had a [build] method
/// that took a [State] argument, [AnimatedWidget] would be forced to provide
/// its [State] object to subclasses even though its [State] object is an
/// internal implementation detail of [AnimatedWidget].
///
/// Conceptually, [StatelessWidget] could also be implemented as a subclass of
/// [StatefulWidget] in a similar manner. If the [build] method were on
/// [StatefulWidget] rather than [State], that would not be possible anymore.
///
/// Putting the [build] function on [State] rather than [StatefulWidget] also
/// helps avoid a category of bugs related to closures implicitly capturing
/// `this`. If you defined a closure in a [build] function on a
/// [StatefulWidget], that closure would implicitly capture `this`, which is
/// the current widget instance, and would have the (immutable) fields of that
/// instance in scope:
///
/// ```dart
/// class MyButton extends StatefulWidget {
/// ...
/// final Color color;
///
/// @override
/// Widget build(BuildContext context, MyButtonState state) {
/// ... () { print("color: $color"); } ...
/// }
/// }
/// ```
///
/// For example, suppose the parent builds `MyButton` with `color` being blue,
/// the `$color` in the print function refers to blue, as expected. Now,
/// suppose the parent rebuilds `MyButton` with green. The closure created by
/// the first build still implicitly refers to the original widget and the
/// `$color` still prints blue even through the widget has been updated to
/// green.
///
/// In contrast, with the [build] function on the [State] object, closures
/// created during [build] implicitly capture the [State] instance instead of
/// the widget instance:
///
/// ```dart
/// class MyButtonState extends State<MyButton> {
/// ...
/// @override
/// Widget build(BuildContext context) {
/// ... () { print("color: ${widget.color}"); } ...
/// }
/// }
/// ```
///
/// Now when the parent rebuilds `MyButton` with green, the closure created by
/// the first build still refers to [State] object, which is preserved across
/// rebuilds, but the framework has updated that [State] object's [widget]
/// property to refer to the new `MyButton` instance and `${widget.color}`
/// prints green, as expected.
///
/// See also:
///
/// * [StatefulWidget], which contains the discussion on performance considerations.
@protected
Widget build(BuildContext context);
/// Called when a dependency of this [State] object changes.
///
/// For example, if the previous call to [build] referenced an
/// [InheritedWidget] that later changed, the framework would call this
/// method to notify this object about the change.
///
/// This method is also called immediately after [initState]. It is safe to
/// call [BuildContext.dependOnInheritedWidgetOfExactType] from this method.
///
/// Subclasses rarely override this method because the framework always
/// calls [build] after a dependency changes. Some subclasses do override
/// this method because they need to do some expensive work (e.g., network
/// fetches) when their dependencies change, and that work would be too
/// expensive to do for every build.
@protected
@mustCallSuper
void didChangeDependencies() { }
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
assert(() {
properties.add(EnumProperty<_StateLifecycle>('lifecycle state', _debugLifecycleState, defaultValue: _StateLifecycle.ready));
return true;
}());
properties.add(ObjectFlagProperty<T>('_widget', _widget, ifNull: 'no widget'));
properties.add(ObjectFlagProperty<StatefulElement>('_element', _element, ifNull: 'not mounted'));
}
}
/// A widget that has a child widget provided to it, instead of building a new
/// widget.
///
/// Useful as a base class for other widgets, such as [InheritedWidget] and
/// [ParentDataWidget].
///
/// See also:
///
/// * [InheritedWidget], for widgets that introduce ambient state that can
/// be read by descendant widgets.
/// * [ParentDataWidget], for widgets that populate the
/// [RenderObject.parentData] slot of their child's [RenderObject] to
/// configure the parent widget's layout.
/// * [StatefulWidget] and [State], for widgets that can build differently
/// several times over their lifetime.
/// * [StatelessWidget], for widgets that always build the same way given a
/// particular configuration and ambient state.
/// * [Widget], for an overview of widgets in general.
abstract class ProxyWidget extends Widget {
/// Creates a widget that has exactly one child widget.
const ProxyWidget({ Key key, @required this.child }) : super(key: key);
/// The widget below this widget in the tree.
///
/// {@template flutter.widgets.child}
/// This widget can only have one child. To lay out multiple children, let this
/// widget's child be a widget such as [Row], [Column], or [Stack], which have a
/// `children` property, and then provide the children to that widget.
/// {@endtemplate}
final Widget child;
}
/// Base class for widgets that hook [ParentData] information to children of
/// [RenderObjectWidget]s.
///
/// This can be used to provide per-child configuration for
/// [RenderObjectWidget]s with more than one child. For example, [Stack] uses
/// the [Positioned] parent data widget to position each child.
///
/// A [ParentDataWidget] is specific to a particular kind of [RenderObject], and
/// thus also to a particular [RenderObjectWidget] class. That class is `T`, the
/// [ParentDataWidget] type argument.
///
/// {@tool snippet}
///
/// This example shows how you would build a [ParentDataWidget] to configure a
/// `FrogJar` widget's children by specifying a [Size] for each one.
///
/// ```dart
/// class FrogSize extends ParentDataWidget<FrogJar> {
/// FrogSize({
/// Key key,
/// @required this.size,
/// @required Widget child,
/// }) : assert(child != null),
/// assert(size != null),
/// super(key: key, child: child);
///
/// final Size size;
///
/// @override
/// void applyParentData(RenderObject renderObject) {
/// final FrogJarParentData parentData = renderObject.parentData;
/// if (parentData.size != size) {
/// parentData.size = size;
/// final RenderFrogJar targetParent = renderObject.parent;
/// targetParent.markNeedsLayout();
/// }
/// }
/// }
/// ```
/// {@end-tool}
///
/// See also:
///
/// * [RenderObject], the superclass for layout algorithms.
/// * [RenderObject.parentData], the slot that this class configures.
/// * [ParentData], the superclass of the data that will be placed in
/// [RenderObject.parentData] slots.
/// * [RenderObjectWidget], the class for widgets that wrap [RenderObject]s.
/// The `T` type parameter for [ParentDataWidget] is a [RenderObjectWidget].
/// * [StatefulWidget] and [State], for widgets that can build differently
/// several times over their lifetime.
abstract class ParentDataWidget<T extends RenderObjectWidget> extends ProxyWidget {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const ParentDataWidget({ Key key, Widget child })
: super(key: key, child: child);
@override
ParentDataElement<T> createElement() => ParentDataElement<T>(this);
/// Subclasses should override this method to return true if the given
/// ancestor is a RenderObjectWidget that wraps a RenderObject that can handle
/// the kind of ParentData widget that the ParentDataWidget subclass handles.
///
/// The default implementation uses the type argument.
bool debugIsValidAncestor(RenderObjectWidget ancestor) {
assert(T != dynamic);
assert(T != RenderObjectWidget);
return ancestor is T;
}
/// Subclasses should override this to describe the requirements for using the
/// ParentDataWidget subclass. It is called when debugIsValidAncestor()
/// returned false for an ancestor, or when there are extraneous
/// [ParentDataWidget]s in the ancestor chain.
Iterable<DiagnosticsNode> debugDescribeInvalidAncestorChain({ String description, DiagnosticsNode ownershipChain, bool foundValidAncestor, Iterable<Widget> badAncestors }) sync* {
assert(T != dynamic);
assert(T != RenderObjectWidget);
if (!foundValidAncestor) {
yield ErrorDescription(
'$runtimeType widgets must be placed inside $T widgets.\n'
'$description has no $T ancestor at all.'
);
} else {
assert(badAncestors.isNotEmpty);
yield ErrorDescription(
'$runtimeType widgets must be placed directly inside $T widgets.\n'
'$description has a $T ancestor, but there are other widgets between them:'
);
for (final Widget ancestor in badAncestors) {
if (ancestor.runtimeType == runtimeType) {
yield ErrorDescription('- $ancestor (this is a different $runtimeType than the one with the problem)');
} else {
yield ErrorDescription('- $ancestor');
}
}
yield ErrorDescription('These widgets cannot come between a $runtimeType and its $T.');
}
yield ErrorDescription('The ownership chain for the parent of the offending $runtimeType was:\n $ownershipChain');
}
/// Write the data from this widget into the given render object's parent data.
///
/// The framework calls this function whenever it detects that the
/// [RenderObject] associated with the [child] has outdated
/// [RenderObject.parentData]. For example, if the render object was recently
/// inserted into the render tree, the render object's parent data might not
/// match the data in this widget.
///
/// Subclasses are expected to override this function to copy data from their
/// fields into the [RenderObject.parentData] field of the given render
/// object. The render object's parent is guaranteed to have been created by a
/// widget of type `T`, which usually means that this function can assume that
/// the render object's parent data object inherits from a particular class.
///
/// If this function modifies data that can change the parent's layout or
/// painting, this function is responsible for calling
/// [RenderObject.markNeedsLayout] or [RenderObject.markNeedsPaint] on the
/// parent, as appropriate.
@protected
void applyParentData(RenderObject renderObject);
/// Whether the [ParentDataElement.applyWidgetOutOfTurn] method is allowed
/// with this widget.
///
/// This should only return true if this widget represents a [ParentData]
/// configuration that will have no impact on the layout or paint phase.
///
/// See also:
///
/// * [ParentDataElement.applyWidgetOutOfTurn], which verifies this in debug
/// mode.
@protected
bool debugCanApplyOutOfTurn() => false;
}
/// Base class for widgets that efficiently propagate information down the tree.
///
/// To obtain the nearest instance of a particular type of inherited widget from
/// a build context, use [BuildContext.dependOnInheritedWidgetOfExactType].
///
/// Inherited widgets, when referenced in this way, will cause the consumer to
/// rebuild when the inherited widget itself changes state.
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=Zbm3hjPjQMk}
///
/// {@tool snippet}
///
/// The following is a skeleton of an inherited widget called `FrogColor`:
///
/// ```dart
/// class FrogColor extends InheritedWidget {
/// const FrogColor({
/// Key key,
/// @required this.color,
/// @required Widget child,
/// }) : assert(color != null),
/// assert(child != null),
/// super(key: key, child: child);
///
/// final Color color;
///
/// static FrogColor of(BuildContext context) {
/// return context.dependOnInheritedWidgetOfExactType<FrogColor>();
/// }
///
/// @override
/// bool updateShouldNotify(FrogColor old) => color != old.color;
/// }
/// ```
/// {@end-tool}
///
/// The convention is to provide a static method `of` on the [InheritedWidget]
/// which does the call to [BuildContext.dependOnInheritedWidgetOfExactType]. This
/// allows the class to define its own fallback logic in case there isn't
/// a widget in scope. In the example above, the value returned will be
/// null in that case, but it could also have defaulted to a value.
///
/// Sometimes, the `of` method returns the data rather than the inherited
/// widget; for example, in this case it could have returned a [Color] instead
/// of the `FrogColor` widget.
///
/// Occasionally, the inherited widget is an implementation detail of another
/// class, and is therefore private. The `of` method in that case is typically
/// put on the public class instead. For example, [Theme] is implemented as a
/// [StatelessWidget] that builds a private inherited widget; [Theme.of] looks
/// for that inherited widget using [BuildContext.dependOnInheritedWidgetOfExactType]
/// and then returns the [ThemeData].
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=1t-8rBCGBYw}
///
/// See also:
///
/// * [StatefulWidget] and [State], for widgets that can build differently
/// several times over their lifetime.
/// * [StatelessWidget], for widgets that always build the same way given a
/// particular configuration and ambient state.
/// * [Widget], for an overview of widgets in general.
/// * [InheritedNotifier], an inherited widget whose value can be a
/// [Listenable], and which will notify dependents whenever the value
/// sends notifications.
/// * [InheritedModel], an inherited widget that allows clients to subscribe
/// to changes for subparts of the value.
abstract class InheritedWidget extends ProxyWidget {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const InheritedWidget({ Key key, Widget child })
: super(key: key, child: child);
@override
InheritedElement createElement() => InheritedElement(this);
/// Whether the framework should notify widgets that inherit from this widget.
///
/// When this widget is rebuilt, sometimes we need to rebuild the widgets that
/// inherit from this widget but sometimes we do not. For example, if the data
/// held by this widget is the same as the data held by `oldWidget`, then we
/// do not need to rebuild the widgets that inherited the data held by
/// `oldWidget`.
///
/// The framework distinguishes these cases by calling this function with the
/// widget that previously occupied this location in the tree as an argument.
/// The given widget is guaranteed to have the same [runtimeType] as this
/// object.
@protected
bool updateShouldNotify(covariant InheritedWidget oldWidget);
}
/// RenderObjectWidgets provide the configuration for [RenderObjectElement]s,
/// which wrap [RenderObject]s, which provide the actual rendering of the
/// application.
abstract class RenderObjectWidget extends Widget {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const RenderObjectWidget({ Key key }) : super(key: key);
/// RenderObjectWidgets always inflate to a [RenderObjectElement] subclass.
@override
RenderObjectElement createElement();
/// Creates an instance of the [RenderObject] class that this
/// [RenderObjectWidget] represents, using the configuration described by this
/// [RenderObjectWidget].
///
/// This method should not do anything with the children of the render object.
/// That should instead be handled by the method that overrides
/// [RenderObjectElement.mount] in the object rendered by this object's
/// [createElement] method. See, for example,
/// [SingleChildRenderObjectElement.mount].
@protected
RenderObject createRenderObject(BuildContext context);
/// Copies the configuration described by this [RenderObjectWidget] to the
/// given [RenderObject], which will be of the same type as returned by this
/// object's [createRenderObject].
///
/// This method should not do anything to update the children of the render
/// object. That should instead be handled by the method that overrides
/// [RenderObjectElement.update] in the object rendered by this object's
/// [createElement] method. See, for example,
/// [SingleChildRenderObjectElement.update].
@protected
void updateRenderObject(BuildContext context, covariant RenderObject renderObject) { }
/// A render object previously associated with this widget has been removed
/// from the tree. The given [RenderObject] will be of the same type as
/// returned by this object's [createRenderObject].
@protected
void didUnmountRenderObject(covariant RenderObject renderObject) { }
}
/// A superclass for RenderObjectWidgets that configure RenderObject subclasses
/// that have no children.
abstract class LeafRenderObjectWidget extends RenderObjectWidget {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const LeafRenderObjectWidget({ Key key }) : super(key: key);
@override
LeafRenderObjectElement createElement() => LeafRenderObjectElement(this);
}
/// A superclass for RenderObjectWidgets that configure RenderObject subclasses
/// that have a single child slot. (This superclass only provides the storage
/// for that child, it doesn't actually provide the updating logic.)
abstract class SingleChildRenderObjectWidget extends RenderObjectWidget {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const SingleChildRenderObjectWidget({ Key key, this.child }) : super(key: key);
/// The widget below this widget in the tree.
///
/// {@macro flutter.widgets.child}
final Widget child;
@override
SingleChildRenderObjectElement createElement() => SingleChildRenderObjectElement(this);
}
/// A superclass for RenderObjectWidgets that configure RenderObject subclasses
/// that have a single list of children. (This superclass only provides the
/// storage for that child list, it doesn't actually provide the updating
/// logic.)
abstract class MultiChildRenderObjectWidget extends RenderObjectWidget {
/// Initializes fields for subclasses.
///
/// The [children] argument must not be null and must not contain any null
/// objects.
MultiChildRenderObjectWidget({ Key key, this.children = const <Widget>[] })
: assert(children != null),
assert(() {
final int index = children.indexOf(null);
if (index >= 0) {
throw FlutterError(
"$runtimeType's children must not contain any null values, "
'but a null value was found at index $index'
);
}
return true;
}()), // https://github.com/dart-lang/sdk/issues/29276
super(key: key);
/// The widgets below this widget in the tree.
///
/// If this list is going to be mutated, it is usually wise to put a [Key] on
/// each of the child widgets, so that the framework can match old
/// configurations to new configurations and maintain the underlying render
/// objects.
///
/// Also, a [Widget] in Flutter is immutable, so directly modifying the
/// [children] such as `someMultiChildRenderObjectWidget.children.add(...)` or
/// as the example code below will result in incorrect behaviors. Whenever the
/// children list is modified, a new list object should be provided.
///
/// ```dart
/// class SomeWidgetState extends State<SomeWidget> {
/// List<Widget> _children;
///
/// void initState() {
/// _children = [];
/// }
///
/// void someHandler() {
/// setState(() {
/// _children.add(...);
/// });
/// }
///
/// Widget build(...) {
/// // Reusing `List<Widget> _children` here is problematic.
/// return Row(children: _children);
/// }
/// }
/// ```
///
/// The following code corrects the problem mentioned above.
///
/// ```dart
/// class SomeWidgetState extends State<SomeWidget> {
/// List<Widget> _children;
///
/// void initState() {
/// _children = [];
/// }
///
/// void someHandler() {
/// setState(() {
/// // The key here allows Flutter to reuse the underlying render
/// // objects even if the children list is recreated.
/// _children.add(ChildWidget(key: ...));
/// });
/// }
///
/// Widget build(...) {
/// // Always create a new list of children as a Widget is immutable.
/// return Row(children: List.from(_children));
/// }
/// }
/// ```
final List<Widget> children;
@override
MultiChildRenderObjectElement createElement() => MultiChildRenderObjectElement(this);
}
// ELEMENTS
enum _ElementLifecycle {
initial,
active,
inactive,
defunct,
}
class _InactiveElements {
bool _locked = false;
final Set<Element> _elements = HashSet<Element>();
void _unmount(Element element) {
assert(element._debugLifecycleState == _ElementLifecycle.inactive);
assert(() {
if (debugPrintGlobalKeyedWidgetLifecycle) {
if (element.widget.key is GlobalKey)
debugPrint('Discarding $element from inactive elements list.');
}
return true;
}());
element.visitChildren((Element child) {
assert(child._parent == element);
_unmount(child);
});
element.unmount();
assert(element._debugLifecycleState == _ElementLifecycle.defunct);
}
void _unmountAll() {
_locked = true;
final List<Element> elements = _elements.toList()..sort(Element._sort);
_elements.clear();
try {
elements.reversed.forEach(_unmount);
} finally {
assert(_elements.isEmpty);
_locked = false;
}
}
static void _deactivateRecursively(Element element) {
assert(element._debugLifecycleState == _ElementLifecycle.active);
element.deactivate();
assert(element._debugLifecycleState == _ElementLifecycle.inactive);
element.visitChildren(_deactivateRecursively);
assert(() {
element.debugDeactivated();
return true;
}());
}
void add(Element element) {
assert(!_locked);
assert(!_elements.contains(element));
assert(element._parent == null);
if (element._active)
_deactivateRecursively(element);
_elements.add(element);
}
void remove(Element element) {
assert(!_locked);
assert(_elements.contains(element));
assert(element._parent == null);
_elements.remove(element);
assert(!element._active);
}
bool debugContains(Element element) {
bool result;
assert(() {
result = _elements.contains(element);
return true;
}());
return result;
}
}
/// Signature for the callback to [BuildContext.visitChildElements].
///
/// The argument is the child being visited.
///
/// It is safe to call `element.visitChildElements` reentrantly within
/// this callback.
typedef ElementVisitor = void Function(Element element);
/// A handle to the location of a widget in the widget tree.
///
/// This class presents a set of methods that can be used from
/// [StatelessWidget.build] methods and from methods on [State] objects.
///
/// [BuildContext] objects are passed to [WidgetBuilder] functions (such as
/// [StatelessWidget.build]), and are available from the [State.context] member.
/// Some static functions (e.g. [showDialog], [Theme.of], and so forth) also
/// take build contexts so that they can act on behalf of the calling widget, or
/// obtain data specifically for the given context.
///
/// Each widget has its own [BuildContext], which becomes the parent of the
/// widget returned by the [StatelessWidget.build] or [State.build] function.
/// (And similarly, the parent of any children for [RenderObjectWidget]s.)
///
/// In particular, this means that within a build method, the build context of
/// the widget of the build method is not the same as the build context of the
/// widgets returned by that build method. This can lead to some tricky cases.
/// For example, [Theme.of(context)] looks for the nearest enclosing [Theme] of
/// the given build context. If a build method for a widget Q includes a [Theme]
/// within its returned widget tree, and attempts to use [Theme.of] passing its
/// own context, the build method for Q will not find that [Theme] object. It
/// will instead find whatever [Theme] was an ancestor to the widget Q. If the
/// build context for a subpart of the returned tree is needed, a [Builder]
/// widget can be used: the build context passed to the [Builder.builder]
/// callback will be that of the [Builder] itself.
///
/// For example, in the following snippet, the [ScaffoldState.showSnackBar]
/// method is called on the [Scaffold] widget that the build method itself
/// creates. If a [Builder] had not been used, and instead the `context`
/// argument of the build method itself had been used, no [Scaffold] would have
/// been found, and the [Scaffold.of] function would have returned null.
///
/// ```dart
/// @override
/// Widget build(BuildContext context) {
/// // here, Scaffold.of(context) returns null
/// return Scaffold(
/// appBar: AppBar(title: Text('Demo')),
/// body: Builder(
/// builder: (BuildContext context) {
/// return FlatButton(
/// child: Text('BUTTON'),
/// onPressed: () {
/// // here, Scaffold.of(context) returns the locally created Scaffold
/// Scaffold.of(context).showSnackBar(SnackBar(
/// content: Text('Hello.')
/// ));
/// }
/// );
/// }
/// )
/// );
/// }
/// ```
///
/// The [BuildContext] for a particular widget can change location over time as
/// the widget is moved around the tree. Because of this, values returned from
/// the methods on this class should not be cached beyond the execution of a
/// single synchronous function.
///
/// [BuildContext] objects are actually [Element] objects. The [BuildContext]
/// interface is used to discourage direct manipulation of [Element] objects.
abstract class BuildContext {
/// The current configuration of the [Element] that is this [BuildContext].
Widget get widget;
/// The [BuildOwner] for this context. The [BuildOwner] is in charge of
/// managing the rendering pipeline for this context.
BuildOwner get owner;
/// The current [RenderObject] for the widget. If the widget is a
/// [RenderObjectWidget], this is the render object that the widget created
/// for itself. Otherwise, it is the render object of the first descendant
/// [RenderObjectWidget].
///
/// This method will only return a valid result after the build phase is
/// complete. It is therefore not valid to call this from a build method.
/// It should only be called from interaction event handlers (e.g.
/// gesture callbacks) or layout or paint callbacks.
///
/// If the render object is a [RenderBox], which is the common case, then the
/// size of the render object can be obtained from the [size] getter. This is
/// only valid after the layout phase, and should therefore only be examined
/// from paint callbacks or interaction event handlers (e.g. gesture
/// callbacks).
///
/// For details on the different phases of a frame, see the discussion at
/// [WidgetsBinding.drawFrame].
///
/// Calling this method is theoretically relatively expensive (O(N) in the
/// depth of the tree), but in practice is usually cheap because the tree
/// usually has many render objects and therefore the distance to the nearest
/// render object is usually short.
RenderObject findRenderObject();
/// The size of the [RenderBox] returned by [findRenderObject].
///
/// This getter will only return a valid result after the layout phase is
/// complete. It is therefore not valid to call this from a build method.
/// It should only be called from paint callbacks or interaction event
/// handlers (e.g. gesture callbacks).
///
/// For details on the different phases of a frame, see the discussion at
/// [WidgetsBinding.drawFrame].
///
/// This getter will only return a valid result if [findRenderObject] actually
/// returns a [RenderBox]. If [findRenderObject] returns a render object that
/// is not a subtype of [RenderBox] (e.g., [RenderView]), this getter will
/// throw an exception in checked mode and will return null in release mode.
///
/// Calling this getter is theoretically relatively expensive (O(N) in the
/// depth of the tree), but in practice is usually cheap because the tree
/// usually has many render objects and therefore the distance to the nearest
/// render object is usually short.
Size get size;
/// Registers this build context with [ancestor] such that when
/// [ancestor]'s widget changes this build context is rebuilt.
///
/// This method is deprecated. Please use [dependOnInheritedElement] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use dependOnInheritedElement instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedWidget inheritFromElement(InheritedElement ancestor, { Object aspect });
/// Registers this build context with [ancestor] such that when
/// [ancestor]'s widget changes this build context is rebuilt.
///
/// Returns `ancestor.widget`.
///
/// This method is rarely called directly. Most applications should use
/// [dependOnInheritedWidgetOfExactType], which calls this method after finding
/// the appropriate [InheritedElement] ancestor.
///
/// All of the qualifications about when [dependOnInheritedWidgetOfExactType] can
/// be called apply to this method as well.
InheritedWidget dependOnInheritedElement(InheritedElement ancestor, { Object aspect });
/// Obtains the nearest widget of the given type, which must be the type of a
/// concrete [InheritedWidget] subclass, and registers this build context with
/// that widget such that when that widget changes (or a new widget of that
/// type is introduced, or the widget goes away), this build context is
/// rebuilt so that it can obtain new values from that widget.
///
/// This method is deprecated. Please use [dependOnInheritedWidgetOfExactType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use dependOnInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedWidget inheritFromWidgetOfExactType(Type targetType, { Object aspect });
/// Obtains the nearest widget of the given type [T], which must be the type of a
/// concrete [InheritedWidget] subclass, and registers this build context with
/// that widget such that when that widget changes (or a new widget of that
/// type is introduced, or the widget goes away), this build context is
/// rebuilt so that it can obtain new values from that widget.
///
/// This is typically called implicitly from `of()` static methods, e.g.
/// [Theme.of].
///
/// This method should not be called from widget constructors or from
/// [State.initState] methods, because those methods would not get called
/// again if the inherited value were to change. To ensure that the widget
/// correctly updates itself when the inherited value changes, only call this
/// (directly or indirectly) from build methods, layout and paint callbacks, or
/// from [State.didChangeDependencies].
///
/// This method should not be called from [State.dispose] because the element
/// tree is no longer stable at that time. To refer to an ancestor from that
/// method, save a reference to the ancestor in [State.didChangeDependencies].
/// It is safe to use this method from [State.deactivate], which is called
/// whenever the widget is removed from the tree.
///
/// It is also possible to call this method from interaction event handlers
/// (e.g. gesture callbacks) or timers, to obtain a value once, if that value
/// is not going to be cached and reused later.
///
/// Calling this method is O(1) with a small constant factor, but will lead to
/// the widget being rebuilt more often.
///
/// Once a widget registers a dependency on a particular type by calling this
/// method, it will be rebuilt, and [State.didChangeDependencies] will be
/// called, whenever changes occur relating to that widget until the next time
/// the widget or one of its ancestors is moved (for example, because an
/// ancestor is added or removed).
///
/// The [aspect] parameter is only used when [T] is an
/// [InheritedWidget] subclasses that supports partial updates, like
/// [InheritedModel]. It specifies what "aspect" of the inherited
/// widget this context depends on.
T dependOnInheritedWidgetOfExactType<T extends InheritedWidget>({ Object aspect });
/// Obtains the element corresponding to the nearest widget of the given type,
/// which must be the type of a concrete [InheritedWidget] subclass.
///
/// This method is deprecated. Please use [getElementForInheritedWidgetOfExactType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use getElementForInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedElement ancestorInheritedElementForWidgetOfExactType(Type targetType);
/// Obtains the element corresponding to the nearest widget of the given type [T],
/// which must be the type of a concrete [InheritedWidget] subclass.
///
/// Calling this method is O(1) with a small constant factor.
///
/// This method does not establish a relationship with the target in the way
/// that [dependOnInheritedWidgetOfExactType] does.
///
/// This method should not be called from [State.dispose] because the element
/// tree is no longer stable at that time. To refer to an ancestor from that
/// method, save a reference to the ancestor by calling
/// [dependOnInheritedWidgetOfExactType] in [State.didChangeDependencies]. It is
/// safe to use this method from [State.deactivate], which is called whenever
/// the widget is removed from the tree.
InheritedElement getElementForInheritedWidgetOfExactType<T extends InheritedWidget>();
/// Returns the nearest ancestor widget of the given type, which must be the
/// type of a concrete [Widget] subclass.
///
/// This method is deprecated. Please use [findAncestorWidgetOfExactType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
Widget ancestorWidgetOfExactType(Type targetType);
/// Returns the nearest ancestor widget of the given type [T], which must be the
/// type of a concrete [Widget] subclass.
///
/// In general, [dependOnInheritedWidgetOfExactType] is more useful, since
/// inherited widgets will trigger consumers to rebuild when they change. This
/// method is appropriate when used in interaction event handlers (e.g.
/// gesture callbacks) or for performing one-off tasks such as asserting that
/// you have or don't have a widget of a specific type as an ancestor. The
/// return value of a Widget's build method should not depend on the value
/// returned by this method, because the build context will not rebuild if the
/// return value of this method changes. This could lead to a situation where
/// data used in the build method changes, but the widget is not rebuilt.
///
/// Calling this method is relatively expensive (O(N) in the depth of the
/// tree). Only call this method if the distance from this widget to the
/// desired ancestor is known to be small and bounded.
///
/// This method should not be called from [State.deactivate] or [State.dispose]
/// because the widget tree is no longer stable at that time. To refer to
/// an ancestor from one of those methods, save a reference to the ancestor
/// by calling [findAncestorWidgetOfExactType] in [State.didChangeDependencies].
///
/// Returns null if a widget of the requested type does not appear in the
/// ancestors of this context.
T findAncestorWidgetOfExactType<T extends Widget>();
/// Returns the [State] object of the nearest ancestor [StatefulWidget] widget
/// that matches the given [TypeMatcher].
///
/// This method is deprecated. Please use [findAncestorStateOfType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
State ancestorStateOfType(TypeMatcher matcher);
/// Returns the [State] object of the nearest ancestor [StatefulWidget] widget
/// that is an instance of the given type [T].
///
/// This should not be used from build methods, because the build context will
/// not be rebuilt if the value that would be returned by this method changes.
/// In general, [dependOnInheritedWidgetOfExactType] is more appropriate for such
/// cases. This method is useful for changing the state of an ancestor widget in
/// a one-off manner, for example, to cause an ancestor scrolling list to
/// scroll this build context's widget into view, or to move the focus in
/// response to user interaction.
///
/// In general, though, consider using a callback that triggers a stateful
/// change in the ancestor rather than using the imperative style implied by
/// this method. This will usually lead to more maintainable and reusable code
/// since it decouples widgets from each other.
///
/// Calling this method is relatively expensive (O(N) in the depth of the
/// tree). Only call this method if the distance from this widget to the
/// desired ancestor is known to be small and bounded.
///
/// This method should not be called from [State.deactivate] or [State.dispose]
/// because the widget tree is no longer stable at that time. To refer to
/// an ancestor from one of those methods, save a reference to the ancestor
/// by calling [findAncestorStateOfType] in [State.didChangeDependencies].
///
/// {@tool snippet}
///
/// ```dart
/// ScrollableState scrollable = context.findAncestorStateOfType<ScrollableState>();
/// ```
/// {@end-tool}
T findAncestorStateOfType<T extends State>();
/// Returns the [State] object of the furthest ancestor [StatefulWidget] widget
/// that matches the given [TypeMatcher].
///
/// This method is deprecated. Please use [findRootAncestorStateOfType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findRootAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
State rootAncestorStateOfType(TypeMatcher matcher);
/// Returns the [State] object of the furthest ancestor [StatefulWidget] widget
/// that is an instance of the given type [T].
///
/// Functions the same way as [findAncestorStateOfType] but keeps visiting subsequent
/// ancestors until there are none of the type instance of [T] remaining.
/// Then returns the last one found.
///
/// This operation is O(N) as well though N is the entire widget tree rather than
/// a subtree.
T findRootAncestorStateOfType<T extends State>();
/// Returns the [RenderObject] object of the nearest ancestor [RenderObjectWidget] widget
/// that matches the given [TypeMatcher].
///
/// This method is deprecated. Please use [findAncestorRenderObjectOfType] instead.
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorRenderObjectOfType instead. '
'This feature was deprecated after v1.12.1.'
)
RenderObject ancestorRenderObjectOfType(TypeMatcher matcher);
/// Returns the [RenderObject] object of the nearest ancestor [RenderObjectWidget] widget
/// that is an instance of the given type [T].
///
/// This should not be used from build methods, because the build context will
/// not be rebuilt if the value that would be returned by this method changes.
/// In general, [dependOnInheritedWidgetOfExactType] is more appropriate for such
/// cases. This method is useful only in esoteric cases where a widget needs
/// to cause an ancestor to change its layout or paint behavior. For example,
/// it is used by [Material] so that [InkWell] widgets can trigger the ink
/// splash on the [Material]'s actual render object.
///
/// Calling this method is relatively expensive (O(N) in the depth of the
/// tree). Only call this method if the distance from this widget to the
/// desired ancestor is known to be small and bounded.
///
/// This method should not be called from [State.deactivate] or [State.dispose]
/// because the widget tree is no longer stable at that time. To refer to
/// an ancestor from one of those methods, save a reference to the ancestor
/// by calling [findAncestorRenderObjectOfType] in [State.didChangeDependencies].
T findAncestorRenderObjectOfType<T extends RenderObject>();
/// Walks the ancestor chain, starting with the parent of this build context's
/// widget, invoking the argument for each ancestor. The callback is given a
/// reference to the ancestor widget's corresponding [Element] object. The
/// walk stops when it reaches the root widget or when the callback returns
/// false. The callback must not return null.
///
/// This is useful for inspecting the widget tree.
///
/// Calling this method is relatively expensive (O(N) in the depth of the tree).
///
/// This method should not be called from [State.deactivate] or [State.dispose]
/// because the element tree is no longer stable at that time. To refer to
/// an ancestor from one of those methods, save a reference to the ancestor
/// by calling [visitAncestorElements] in [State.didChangeDependencies].
void visitAncestorElements(bool visitor(Element element));
/// Walks the children of this widget.
///
/// This is useful for applying changes to children after they are built
/// without waiting for the next frame, especially if the children are known,
/// and especially if there is exactly one child (as is always the case for
/// [StatefulWidget]s or [StatelessWidget]s).
///
/// Calling this method is very cheap for build contexts that correspond to
/// [StatefulWidget]s or [StatelessWidget]s (O(1), since there's only one
/// child).
///
/// Calling this method is potentially expensive for build contexts that
/// correspond to [RenderObjectWidget]s (O(N) in the number of children).
///
/// Calling this method recursively is extremely expensive (O(N) in the number
/// of descendants), and should be avoided if possible. Generally it is
/// significantly cheaper to use an [InheritedWidget] and have the descendants
/// pull data down, than it is to use [visitChildElements] recursively to push
/// data down to them.
void visitChildElements(ElementVisitor visitor);
/// Returns a description of an [Element] from the current build context.
DiagnosticsNode describeElement(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty});
/// Returns a description of the [Widget] associated with the current build context.
DiagnosticsNode describeWidget(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty});
/// Adds a description of a specific type of widget missing from the current
/// build context's ancestry tree.
///
/// You can find an example of using this method in [debugCheckHasMaterial].
List<DiagnosticsNode> describeMissingAncestor({ @required Type expectedAncestorType });
/// Adds a description of the ownership chain from a specific [Element]
/// to the error report.
///
/// The ownership chain is useful for debugging the source of an element.
DiagnosticsNode describeOwnershipChain(String name);
}
/// Manager class for the widgets framework.
///
/// This class tracks which widgets need rebuilding, and handles other tasks
/// that apply to widget trees as a whole, such as managing the inactive element
/// list for the tree and triggering the "reassemble" command when necessary
/// during hot reload when debugging.
///
/// The main build owner is typically owned by the [WidgetsBinding], and is
/// driven from the operating system along with the rest of the
/// build/layout/paint pipeline.
///
/// Additional build owners can be built to manage off-screen widget trees.
///
/// To assign a build owner to a tree, use the
/// [RootRenderObjectElement.assignOwner] method on the root element of the
/// widget tree.
class BuildOwner {
/// Creates an object that manages widgets.
BuildOwner({ this.onBuildScheduled });
/// Called on each build pass when the first buildable element is marked
/// dirty.
VoidCallback onBuildScheduled;
final _InactiveElements _inactiveElements = _InactiveElements();
final List<Element> _dirtyElements = <Element>[];
bool _scheduledFlushDirtyElements = false;
/// Whether [_dirtyElements] need to be sorted again as a result of more
/// elements becoming dirty during the build.
///
/// This is necessary to preserve the sort order defined by [Element._sort].
///
/// This field is set to null when [buildScope] is not actively rebuilding
/// the widget tree.
bool _dirtyElementsNeedsResorting;
/// Whether [buildScope] is actively rebuilding the widget tree.
///
/// [scheduleBuildFor] should only be called when this value is true.
bool get _debugIsInBuildScope => _dirtyElementsNeedsResorting != null;
/// The object in charge of the focus tree.
///
/// Rarely used directly. Instead, consider using [FocusScope.of] to obtain
/// the [FocusScopeNode] for a given [BuildContext].
///
/// See [FocusManager] for more details.
FocusManager focusManager = FocusManager();
/// Adds an element to the dirty elements list so that it will be rebuilt
/// when [WidgetsBinding.drawFrame] calls [buildScope].
void scheduleBuildFor(Element element) {
assert(element != null);
assert(element.owner == this);
assert(() {
if (debugPrintScheduleBuildForStacks)
debugPrintStack(label: 'scheduleBuildFor() called for $element${_dirtyElements.contains(element) ? " (ALREADY IN LIST)" : ""}');
if (!element.dirty) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('scheduleBuildFor() called for a widget that is not marked as dirty.'),
element.describeElement('The method was called for the following element'),
ErrorDescription(
'This element is not current marked as dirty. Make sure to set the dirty flag before '
'calling scheduleBuildFor().'),
ErrorHint(
'If you did not attempt to call scheduleBuildFor() yourself, then this probably '
'indicates a bug in the widgets framework. Please report it:\n'
' https://github.com/flutter/flutter/issues/new?template=BUG.md'
),
]);
}
return true;
}());
if (element._inDirtyList) {
assert(() {
if (debugPrintScheduleBuildForStacks)
debugPrintStack(label: 'BuildOwner.scheduleBuildFor() called; _dirtyElementsNeedsResorting was $_dirtyElementsNeedsResorting (now true); dirty list is: $_dirtyElements');
if (!_debugIsInBuildScope) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('BuildOwner.scheduleBuildFor() called inappropriately.'),
ErrorHint(
'The BuildOwner.scheduleBuildFor() method should only be called while the '
'buildScope() method is actively rebuilding the widget tree.'
),
]);
}
return true;
}());
_dirtyElementsNeedsResorting = true;
return;
}
if (!_scheduledFlushDirtyElements && onBuildScheduled != null) {
_scheduledFlushDirtyElements = true;
onBuildScheduled();
}
_dirtyElements.add(element);
element._inDirtyList = true;
assert(() {
if (debugPrintScheduleBuildForStacks)
debugPrint('...dirty list is now: $_dirtyElements');
return true;
}());
}
int _debugStateLockLevel = 0;
bool get _debugStateLocked => _debugStateLockLevel > 0;
/// Whether this widget tree is in the build phase.
///
/// Only valid when asserts are enabled.
bool get debugBuilding => _debugBuilding;
bool _debugBuilding = false;
Element _debugCurrentBuildTarget;
/// Establishes a scope in which calls to [State.setState] are forbidden, and
/// calls the given `callback`.
///
/// This mechanism is used to ensure that, for instance, [State.dispose] does
/// not call [State.setState].
void lockState(void callback()) {
assert(callback != null);
assert(_debugStateLockLevel >= 0);
assert(() {
_debugStateLockLevel += 1;
return true;
}());
try {
callback();
} finally {
assert(() {
_debugStateLockLevel -= 1;
return true;
}());
}
assert(_debugStateLockLevel >= 0);
}
/// Establishes a scope for updating the widget tree, and calls the given
/// `callback`, if any. Then, builds all the elements that were marked as
/// dirty using [scheduleBuildFor], in depth order.
///
/// This mechanism prevents build methods from transitively requiring other
/// build methods to run, potentially causing infinite loops.
///
/// The dirty list is processed after `callback` returns, building all the
/// elements that were marked as dirty using [scheduleBuildFor], in depth
/// order. If elements are marked as dirty while this method is running, they
/// must be deeper than the `context` node, and deeper than any
/// previously-built node in this pass.
///
/// To flush the current dirty list without performing any other work, this
/// function can be called with no callback. This is what the framework does
/// each frame, in [WidgetsBinding.drawFrame].
///
/// Only one [buildScope] can be active at a time.
///
/// A [buildScope] implies a [lockState] scope as well.
///
/// To print a console message every time this method is called, set
/// [debugPrintBuildScope] to true. This is useful when debugging problems
/// involving widgets not getting marked dirty, or getting marked dirty too
/// often.
void buildScope(Element context, [ VoidCallback callback ]) {
if (callback == null && _dirtyElements.isEmpty)
return;
assert(context != null);
assert(_debugStateLockLevel >= 0);
assert(!_debugBuilding);
assert(() {
if (debugPrintBuildScope)
debugPrint('buildScope called with context $context; dirty list is: $_dirtyElements');
_debugStateLockLevel += 1;
_debugBuilding = true;
return true;
}());
Timeline.startSync('Build', arguments: timelineWhitelistArguments);
try {
_scheduledFlushDirtyElements = true;
if (callback != null) {
assert(_debugStateLocked);
Element debugPreviousBuildTarget;
assert(() {
context._debugSetAllowIgnoredCallsToMarkNeedsBuild(true);
debugPreviousBuildTarget = _debugCurrentBuildTarget;
_debugCurrentBuildTarget = context;
return true;
}());
_dirtyElementsNeedsResorting = false;
try {
callback();
} finally {
assert(() {
context._debugSetAllowIgnoredCallsToMarkNeedsBuild(false);
assert(_debugCurrentBuildTarget == context);
_debugCurrentBuildTarget = debugPreviousBuildTarget;
_debugElementWasRebuilt(context);
return true;
}());
}
}
_dirtyElements.sort(Element._sort);
_dirtyElementsNeedsResorting = false;
int dirtyCount = _dirtyElements.length;
int index = 0;
while (index < dirtyCount) {
assert(_dirtyElements[index] != null);
assert(_dirtyElements[index]._inDirtyList);
assert(!_dirtyElements[index]._active || _dirtyElements[index]._debugIsInScope(context));
try {
_dirtyElements[index].rebuild();
} catch (e, stack) {
_debugReportException(
ErrorDescription('while rebuilding dirty elements'),
e,
stack,
informationCollector: () sync* {
yield DiagnosticsDebugCreator(DebugCreator(_dirtyElements[index]));
yield _dirtyElements[index].describeElement('The element being rebuilt at the time was index $index of $dirtyCount');
},
);
}
index += 1;
if (dirtyCount < _dirtyElements.length || _dirtyElementsNeedsResorting) {
_dirtyElements.sort(Element._sort);
_dirtyElementsNeedsResorting = false;
dirtyCount = _dirtyElements.length;
while (index > 0 && _dirtyElements[index - 1].dirty) {
// It is possible for previously dirty but inactive widgets to move right in the list.
// We therefore have to move the index left in the list to account for this.
// We don't know how many could have moved. However, we do know that the only possible
// change to the list is that nodes that were previously to the left of the index have
// now moved to be to the right of the right-most cleaned node, and we do know that
// all the clean nodes were to the left of the index. So we move the index left
// until just after the right-most clean node.
index -= 1;
}
}
}
assert(() {
if (_dirtyElements.any((Element element) => element._active && element.dirty)) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('buildScope missed some dirty elements.'),
ErrorHint('This probably indicates that the dirty list should have been resorted but was not.'),
Element.describeElements('The list of dirty elements at the end of the buildScope call was', _dirtyElements),
]);
}
return true;
}());
} finally {
for (final Element element in _dirtyElements) {
assert(element._inDirtyList);
element._inDirtyList = false;
}
_dirtyElements.clear();
_scheduledFlushDirtyElements = false;
_dirtyElementsNeedsResorting = null;
Timeline.finishSync();
assert(_debugBuilding);
assert(() {
_debugBuilding = false;
_debugStateLockLevel -= 1;
if (debugPrintBuildScope)
debugPrint('buildScope finished');
return true;
}());
}
assert(_debugStateLockLevel >= 0);
}
Map<Element, Set<GlobalKey>> _debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans;
void _debugTrackElementThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans(Element node, GlobalKey key) {
_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans ??= HashMap<Element, Set<GlobalKey>>();
final Set<GlobalKey> keys = _debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans
.putIfAbsent(node, () => HashSet<GlobalKey>());
keys.add(key);
}
void _debugElementWasRebuilt(Element node) {
_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans?.remove(node);
}
/// Complete the element build pass by unmounting any elements that are no
/// longer active.
///
/// This is called by [WidgetsBinding.drawFrame].
///
/// In debug mode, this also runs some sanity checks, for example checking for
/// duplicate global keys.
///
/// After the current call stack unwinds, a microtask that notifies listeners
/// about changes to global keys will run.
void finalizeTree() {
Timeline.startSync('Finalize tree', arguments: timelineWhitelistArguments);
try {
lockState(() {
_inactiveElements._unmountAll(); // this unregisters the GlobalKeys
});
assert(() {
try {
GlobalKey._debugVerifyIllFatedPopulation();
if (_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans != null &&
_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans.isNotEmpty) {
final Set<GlobalKey> keys = HashSet<GlobalKey>();
for (final Element element in _debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans.keys) {
if (element._debugLifecycleState != _ElementLifecycle.defunct)
keys.addAll(_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans[element]);
}
if (keys.isNotEmpty) {
final Map<String, int> keyStringCount = HashMap<String, int>();
for (final String key in keys.map<String>((GlobalKey key) => key.toString())) {
if (keyStringCount.containsKey(key)) {
keyStringCount[key] += 1;
} else {
keyStringCount[key] = 1;
}
}
final List<String> keyLabels = <String>[];
keyStringCount.forEach((String key, int count) {
if (count == 1) {
keyLabels.add(key);
} else {
keyLabels.add('$key ($count different affected keys had this toString representation)');
}
});
final Iterable<Element> elements = _debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans.keys;
final Map<String, int> elementStringCount = HashMap<String, int>();
for (final String element in elements.map<String>((Element element) => element.toString())) {
if (elementStringCount.containsKey(element)) {
elementStringCount[element] += 1;
} else {
elementStringCount[element] = 1;
}
}
final List<String> elementLabels = <String>[];
elementStringCount.forEach((String element, int count) {
if (count == 1) {
elementLabels.add(element);
} else {
elementLabels.add('$element ($count different affected elements had this toString representation)');
}
});
assert(keyLabels.isNotEmpty);
final String the = keys.length == 1 ? ' the' : '';
final String s = keys.length == 1 ? '' : 's';
final String were = keys.length == 1 ? 'was' : 'were';
final String their = keys.length == 1 ? 'its' : 'their';
final String respective = elementLabels.length == 1 ? '' : ' respective';
final String those = keys.length == 1 ? 'that' : 'those';
final String s2 = elementLabels.length == 1 ? '' : 's';
final String those2 = elementLabels.length == 1 ? 'that' : 'those';
final String they = elementLabels.length == 1 ? 'it' : 'they';
final String think = elementLabels.length == 1 ? 'thinks' : 'think';
final String are = elementLabels.length == 1 ? 'is' : 'are';
// TODO(jacobr): make this error more structured to better expose which widgets had problems.
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Duplicate GlobalKey$s detected in widget tree.'),
// TODO(jacobr): refactor this code so the elements are clickable
// in GUI debug tools.
ErrorDescription(
'The following GlobalKey$s $were specified multiple times in the widget tree. This will lead to '
'parts of the widget tree being truncated unexpectedly, because the second time a key is seen, '
'the previous instance is moved to the new location. The key$s $were:\n'
'- ${keyLabels.join("\n ")}\n'
'This was determined by noticing that after$the widget$s with the above global key$s $were moved '
'out of $their$respective previous parent$s2, $those2 previous parent$s2 never updated during this frame, meaning '
'that $they either did not update at all or updated before the widget$s $were moved, in either case '
'implying that $they still $think that $they should have a child with $those global key$s.\n'
'The specific parent$s2 that did not update after having one or more children forcibly removed '
'due to GlobalKey reparenting $are:\n'
'- ${elementLabels.join("\n ")}'
'\nA GlobalKey can only be specified on one widget at a time in the widget tree.'
),
]);
}
}
} finally {
_debugElementsThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans?.clear();
}
return true;
}());
} catch (e, stack) {
_debugReportException(ErrorSummary('while finalizing the widget tree'), e, stack);
} finally {
Timeline.finishSync();
}
}
/// Cause the entire subtree rooted at the given [Element] to be entirely
/// rebuilt. This is used by development tools when the application code has
/// changed and is being hot-reloaded, to cause the widget tree to pick up any
/// changed implementations.
///
/// This is expensive and should not be called except during development.
void reassemble(Element root) {
Timeline.startSync('Dirty Element Tree');
try {
assert(root._parent == null);
assert(root.owner == this);
root.reassemble();
} finally {
Timeline.finishSync();
}
}
}
/// An instantiation of a [Widget] at a particular location in the tree.
///
/// Widgets describe how to configure a subtree but the same widget can be used
/// to configure multiple subtrees simultaneously because widgets are immutable.
/// An [Element] represents the use of a widget to configure a specific location
/// in the tree. Over time, the widget associated with a given element can
/// change, for example, if the parent widget rebuilds and creates a new widget
/// for this location.
///
/// Elements form a tree. Most elements have a unique child, but some widgets
/// (e.g., subclasses of [RenderObjectElement]) can have multiple children.
///
/// Elements have the following lifecycle:
///
/// * The framework creates an element by calling [Widget.createElement] on the
/// widget that will be used as the element's initial configuration.
/// * The framework calls [mount] to add the newly created element to the tree
/// at a given slot in a given parent. The [mount] method is responsible for
/// inflating any child widgets and calling [attachRenderObject] as
/// necessary to attach any associated render objects to the render tree.
/// * At this point, the element is considered "active" and might appear on
/// screen.
/// * At some point, the parent might decide to change the widget used to
/// configure this element, for example because the parent rebuilt with new
/// state. When this happens, the framework will call [update] with the new
/// widget. The new widget will always have the same [runtimeType] and key as
/// old widget. If the parent wishes to change the [runtimeType] or key of
/// the widget at this location in the tree, it can do so by unmounting this
/// element and inflating the new widget at this location.
/// * At some point, an ancestor might decide to remove this element (or an
/// intermediate ancestor) from the tree, which the ancestor does by calling
/// [deactivateChild] on itself. Deactivating the intermediate ancestor will
/// remove that element's render object from the render tree and add this
/// element to the [owner]'s list of inactive elements, causing the framework
/// to call [deactivate] on this element.
/// * At this point, the element is considered "inactive" and will not appear
/// on screen. An element can remain in the inactive state only until
/// the end of the current animation frame. At the end of the animation
/// frame, any elements that are still inactive will be unmounted.
/// * If the element gets reincorporated into the tree (e.g., because it or one
/// of its ancestors has a global key that is reused), the framework will
/// remove the element from the [owner]'s list of inactive elements, call
/// [activate] on the element, and reattach the element's render object to
/// the render tree. (At this point, the element is again considered "active"
/// and might appear on screen.)
/// * If the element does not get reincorporated into the tree by the end of
/// the current animation frame, the framework will call [unmount] on the
/// element.
/// * At this point, the element is considered "defunct" and will not be
/// incorporated into the tree in the future.
abstract class Element extends DiagnosticableTree implements BuildContext {
/// Creates an element that uses the given widget as its configuration.
///
/// Typically called by an override of [Widget.createElement].
Element(Widget widget)
: assert(widget != null),
_widget = widget;
Element _parent;
// Custom implementation of `operator ==` optimized for the ".of" pattern
// used with `InheritedWidgets`.
@override
bool operator ==(Object other) => identical(this, other);
// Custom implementation of hash code optimized for the ".of" pattern used
// with `InheritedWidgets`.
//
// `Element.dependOnInheritedWidgetOfExactType` relies heavily on hash-based
// `Set` look-ups, putting this getter on the performance critical path.
//
// The value is designed to fit within the SMI representation. This makes
// the cached value use less memory (one field and no extra heap objects) and
// cheap to compare (no indirection).
//
// See also:
//
// * https://dart.dev/articles/dart-vm/numeric-computation, which
// explains how numbers are represented in Dart.
@override
int get hashCode => _cachedHash;
final int _cachedHash = _nextHashCode = (_nextHashCode + 1) % 0xffffff;
static int _nextHashCode = 1;
/// Information set by parent to define where this child fits in its parent's
/// child list.
///
/// Subclasses of Element that only have one child should use null for
/// the slot for that child.
dynamic get slot => _slot;
dynamic _slot;
/// An integer that is guaranteed to be greater than the parent's, if any.
/// The element at the root of the tree must have a depth greater than 0.
int get depth => _depth;
int _depth;
static int _sort(Element a, Element b) {
if (a.depth < b.depth)
return -1;
if (b.depth < a.depth)
return 1;
if (b.dirty && !a.dirty)
return -1;
if (a.dirty && !b.dirty)
return 1;
return 0;
}
/// The configuration for this element.
@override
Widget get widget => _widget;
Widget _widget;
/// The object that manages the lifecycle of this element.
@override
BuildOwner get owner => _owner;
BuildOwner _owner;
bool _active = false;
/// {@template flutter.widgets.reassemble}
/// Called whenever the application is reassembled during debugging, for
/// example during hot reload.
///
/// This method should rerun any initialization logic that depends on global
/// state, for example, image loading from asset bundles (since the asset
/// bundle may have changed).
///
/// This function will only be called during development. In release builds,
/// the `ext.flutter.reassemble` hook is not available, and so this code will
/// never execute.
///
/// Implementers should not rely on any ordering for hot reload source update,
/// reassemble, and build methods after a hot reload has been initiated. It is
/// possible that a [Timer] (e.g. an [Animation]) or a debugging session
/// attached to the isolate could trigger a build with reloaded code _before_
/// reassemble is called. Code that expects preconditions to be set by
/// reassemble after a hot reload must be resilient to being called out of
/// order, e.g. by fizzling instead of throwing. That said, once reassemble is
/// called, build will be called after it at least once.
/// {@endtemplate}
///
/// See also:
///
/// * [State.reassemble]
/// * [BindingBase.reassembleApplication]
/// * [Image], which uses this to reload images.
@mustCallSuper
@protected
void reassemble() {
markNeedsBuild();
visitChildren((Element child) {
child.reassemble();
});
}
bool _debugIsInScope(Element target) {
Element current = this;
while (current != null) {
if (target == current)
return true;
current = current._parent;
}
return false;
}
/// The render object at (or below) this location in the tree.
///
/// If this object is a [RenderObjectElement], the render object is the one at
/// this location in the tree. Otherwise, this getter will walk down the tree
/// until it finds a [RenderObjectElement].
RenderObject get renderObject {
RenderObject result;
void visit(Element element) {
assert(result == null); // this verifies that there's only one child
if (element is RenderObjectElement)
result = element.renderObject;
else
element.visitChildren(visit);
}
visit(this);
return result;
}
@override
List<DiagnosticsNode> describeMissingAncestor({ @required Type expectedAncestorType }) {
final List<DiagnosticsNode> information = <DiagnosticsNode>[];
final List<Element> ancestors = <Element>[];
visitAncestorElements((Element element) {
ancestors.add(element);
return true;
});
information.add(DiagnosticsProperty<Element>(
'The specific widget that could not find a $expectedAncestorType ancestor was',
this,
style: DiagnosticsTreeStyle.errorProperty,
));
if (ancestors.isNotEmpty) {
information.add(describeElements('The ancestors of this widget were', ancestors));
} else {
information.add(ErrorDescription(
'This widget is the root of the tree, so it has no '
'ancestors, let alone a "$expectedAncestorType" ancestor.'
));
}
return information;
}
/// Returns a list of [Element]s from the current build context to the error report.
static DiagnosticsNode describeElements(String name, Iterable<Element> elements) {
return DiagnosticsBlock(
name: name,
children: elements.map<DiagnosticsNode>((Element element) => DiagnosticsProperty<Element>('', element)).toList(),
allowTruncate: true,
);
}
@override
DiagnosticsNode describeElement(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty}) {
return DiagnosticsProperty<Element>(name, this, style: style);
}
@override
DiagnosticsNode describeWidget(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty}) {
return DiagnosticsProperty<Element>(name, this, style: style);
}
@override
DiagnosticsNode describeOwnershipChain(String name) {
// TODO(jacobr): make this structured so clients can support clicks on
// individual entries. For example, is this an iterable with arrows as
// separators?
return StringProperty(name, debugGetCreatorChain(10));
}
// This is used to verify that Element objects move through life in an
// orderly fashion.
_ElementLifecycle _debugLifecycleState = _ElementLifecycle.initial;
/// Calls the argument for each child. Must be overridden by subclasses that
/// support having children.
///
/// There is no guaranteed order in which the children will be visited, though
/// it should be consistent over time.
///
/// Calling this during build is dangerous: the child list might still be
/// being updated at that point, so the children might not be constructed yet,
/// or might be old children that are going to be replaced. This method should
/// only be called if it is provable that the children are available.
void visitChildren(ElementVisitor visitor) { }
/// Calls the argument for each child considered onstage.
///
/// Classes like [Offstage] and [Overlay] override this method to hide their
/// children.
///
/// Being onstage affects the element's discoverability during testing when
/// you use Flutter's [Finder] objects. For example, when you instruct the
/// test framework to tap on a widget, by default the finder will look for
/// onstage elements and ignore the offstage ones.
///
/// The default implementation defers to [visitChildren] and therefore treats
/// the element as onstage.
///
/// See also:
///
/// * [Offstage] widget that hides its children.
/// * [Finder] that skips offstage widgets by default.
/// * [RenderObject.visitChildrenForSemantics], in contrast to this method,
/// designed specifically for excluding parts of the UI from the semantics
/// tree.
void debugVisitOnstageChildren(ElementVisitor visitor) => visitChildren(visitor);
/// Wrapper around [visitChildren] for [BuildContext].
@override
void visitChildElements(ElementVisitor visitor) {
assert(() {
if (owner == null || !owner._debugStateLocked)
return true;
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('visitChildElements() called during build.'),
ErrorDescription(
'The BuildContext.visitChildElements() method can\'t be called during '
'build because the child list is still being updated at that point, '
'so the children might not be constructed yet, or might be old children '
'that are going to be replaced.'
),
]);
}());
visitChildren(visitor);
}
/// Update the given child with the given new configuration.
///
/// This method is the core of the widgets system. It is called each time we
/// are to add, update, or remove a child based on an updated configuration.
///
/// If the `child` is null, and the `newWidget` is not null, then we have a new
/// child for which we need to create an [Element], configured with `newWidget`.
///
/// If the `newWidget` is null, and the `child` is not null, then we need to
/// remove it because it no longer has a configuration.
///
/// If neither are null, then we need to update the `child`'s configuration to
/// be the new configuration given by `newWidget`. If `newWidget` can be given
/// to the existing child (as determined by [Widget.canUpdate]), then it is so
/// given. Otherwise, the old child needs to be disposed and a new child
/// created for the new configuration.
///
/// If both are null, then we don't have a child and won't have a child, so we
/// do nothing.
///
/// The [updateChild] method returns the new child, if it had to create one,
/// or the child that was passed in, if it just had to update the child, or
/// null, if it removed the child and did not replace it.
///
/// The following table summarizes the above:
///
/// | | **newWidget == null** | **newWidget != null** |
/// | :-----------------: | :--------------------- | :---------------------- |
/// | **child == null** | Returns null. | Returns new [Element]. |
/// | **child != null** | Old child is removed, returns null. | Old child updated if possible, returns child or new [Element]. |
@protected
Element updateChild(Element child, Widget newWidget, dynamic newSlot) {
assert(() {
final Key key = newWidget?.key;
if (key is GlobalKey) {
key._debugReserveFor(this);
}
return true;
}());
if (newWidget == null) {
if (child != null)
deactivateChild(child);
return null;
}
if (child != null) {
if (child.widget == newWidget) {
if (child.slot != newSlot)
updateSlotForChild(child, newSlot);
return child;
}
if (Widget.canUpdate(child.widget, newWidget)) {
if (child.slot != newSlot)
updateSlotForChild(child, newSlot);
child.update(newWidget);
assert(child.widget == newWidget);
assert(() {
child.owner._debugElementWasRebuilt(child);
return true;
}());
return child;
}
deactivateChild(child);
assert(child._parent == null);
}
return inflateWidget(newWidget, newSlot);
}
/// Add this element to the tree in the given slot of the given parent.
///
/// The framework calls this function when a newly created element is added to
/// the tree for the first time. Use this method to initialize state that
/// depends on having a parent. State that is independent of the parent can
/// more easily be initialized in the constructor.
///
/// This method transitions the element from the "initial" lifecycle state to
/// the "active" lifecycle state.
@mustCallSuper
void mount(Element parent, dynamic newSlot) {
assert(_debugLifecycleState == _ElementLifecycle.initial);
assert(widget != null);
assert(_parent == null);
assert(parent == null || parent._debugLifecycleState == _ElementLifecycle.active);
assert(slot == null);
assert(depth == null);
assert(!_active);
_parent = parent;
_slot = newSlot;
_depth = _parent != null ? _parent.depth + 1 : 1;
_active = true;
if (parent != null) // Only assign ownership if the parent is non-null
_owner = parent.owner;
final Key key = widget.key;
if (key is GlobalKey) {
key._register(this);
}
_updateInheritance();
assert(() {
_debugLifecycleState = _ElementLifecycle.active;
return true;
}());
}
/// Change the widget used to configure this element.
///
/// The framework calls this function when the parent wishes to use a
/// different widget to configure this element. The new widget is guaranteed
/// to have the same [runtimeType] as the old widget.
///
/// This function is called only during the "active" lifecycle state.
@mustCallSuper
void update(covariant Widget newWidget) {
// This code is hot when hot reloading, so we try to
// only call _AssertionError._evaluateAssertion once.
assert(_debugLifecycleState == _ElementLifecycle.active
&& widget != null
&& newWidget != null
&& newWidget != widget
&& depth != null
&& _active
&& Widget.canUpdate(widget, newWidget));
_widget = newWidget;
}
/// Change the slot that the given child occupies in its parent.
///
/// Called by [MultiChildRenderObjectElement], and other [RenderObjectElement]
/// subclasses that have multiple children, when child moves from one position
/// to another in this element's child list.
@protected
void updateSlotForChild(Element child, dynamic newSlot) {
assert(_debugLifecycleState == _ElementLifecycle.active);
assert(child != null);
assert(child._parent == this);
void visit(Element element) {
element._updateSlot(newSlot);
if (element is! RenderObjectElement)
element.visitChildren(visit);
}
visit(child);
}
void _updateSlot(dynamic newSlot) {
assert(_debugLifecycleState == _ElementLifecycle.active);
assert(widget != null);
assert(_parent != null);
assert(_parent._debugLifecycleState == _ElementLifecycle.active);
assert(depth != null);
_slot = newSlot;
}
void _updateDepth(int parentDepth) {
final int expectedDepth = parentDepth + 1;
if (_depth < expectedDepth) {
_depth = expectedDepth;
visitChildren((Element child) {
child._updateDepth(expectedDepth);
});
}
}
/// Remove [renderObject] from the render tree.
///
/// The default implementation of this function simply calls
/// [detachRenderObject] recursively on its child. The
/// [RenderObjectElement.detachRenderObject] override does the actual work of
/// removing [renderObject] from the render tree.
///
/// This is called by [deactivateChild].
void detachRenderObject() {
visitChildren((Element child) {
child.detachRenderObject();
});
_slot = null;
}
/// Add [renderObject] to the render tree at the location specified by [slot].
///
/// The default implementation of this function simply calls
/// [attachRenderObject] recursively on its child. The
/// [RenderObjectElement.attachRenderObject] override does the actual work of
/// adding [renderObject] to the render tree.
void attachRenderObject(dynamic newSlot) {
assert(_slot == null);
visitChildren((Element child) {
child.attachRenderObject(newSlot);
});
_slot = newSlot;
}
Element _retakeInactiveElement(GlobalKey key, Widget newWidget) {
// The "inactivity" of the element being retaken here may be forward-looking: if
// we are taking an element with a GlobalKey from an element that currently has
// it as a child, then we know that that element will soon no longer have that
// element as a child. The only way that assumption could be false is if the
// global key is being duplicated, and we'll try to track that using the
// _debugTrackElementThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans call below.
final Element element = key._currentElement;
if (element == null)
return null;
if (!Widget.canUpdate(element.widget, newWidget))
return null;
assert(() {
if (debugPrintGlobalKeyedWidgetLifecycle)
debugPrint('Attempting to take $element from ${element._parent ?? "inactive elements list"} to put in $this.');
return true;
}());
final Element parent = element._parent;
if (parent != null) {
assert(() {
if (parent == this) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('A GlobalKey was used multiple times inside one widget\'s child list.'),
DiagnosticsProperty<GlobalKey>('The offending GlobalKey was', key),
parent.describeElement('The parent of the widgets with that key was'),
element.describeElement('The first child to get instantiated with that key became'),
DiagnosticsProperty<Widget>('The second child that was to be instantiated with that key was', widget, style: DiagnosticsTreeStyle.errorProperty),
ErrorDescription('A GlobalKey can only be specified on one widget at a time in the widget tree.'),
]);
}
parent.owner._debugTrackElementThatWillNeedToBeRebuiltDueToGlobalKeyShenanigans(
parent,
key,
);
return true;
}());
parent.forgetChild(element);
parent.deactivateChild(element);
}
assert(element._parent == null);
owner._inactiveElements.remove(element);
return element;
}
/// Create an element for the given widget and add it as a child of this
/// element in the given slot.
///
/// This method is typically called by [updateChild] but can be called
/// directly by subclasses that need finer-grained control over creating
/// elements.
///
/// If the given widget has a global key and an element already exists that
/// has a widget with that global key, this function will reuse that element
/// (potentially grafting it from another location in the tree or reactivating
/// it from the list of inactive elements) rather than creating a new element.
///
/// The element returned by this function will already have been mounted and
/// will be in the "active" lifecycle state.
@protected
Element inflateWidget(Widget newWidget, dynamic newSlot) {
assert(newWidget != null);
final Key key = newWidget.key;
if (key is GlobalKey) {
final Element newChild = _retakeInactiveElement(key, newWidget);
if (newChild != null) {
assert(newChild._parent == null);
assert(() {
_debugCheckForCycles(newChild);
return true;
}());
newChild._activateWithParent(this, newSlot);
final Element updatedChild = updateChild(newChild, newWidget, newSlot);
assert(newChild == updatedChild);
return updatedChild;
}
}
final Element newChild = newWidget.createElement();
assert(() {
_debugCheckForCycles(newChild);
return true;
}());
newChild.mount(this, newSlot);
assert(newChild._debugLifecycleState == _ElementLifecycle.active);
return newChild;
}
void _debugCheckForCycles(Element newChild) {
assert(newChild._parent == null);
assert(() {
Element node = this;
while (node._parent != null)
node = node._parent;
assert(node != newChild); // indicates we are about to create a cycle
return true;
}());
}
/// Move the given element to the list of inactive elements and detach its
/// render object from the render tree.
///
/// This method stops the given element from being a child of this element by
/// detaching its render object from the render tree and moving the element to
/// the list of inactive elements.
///
/// This method (indirectly) calls [deactivate] on the child.
///
/// The caller is responsible for removing the child from its child model.
/// Typically [deactivateChild] is called by the element itself while it is
/// updating its child model; however, during [GlobalKey] reparenting, the new
/// parent proactively calls the old parent's [deactivateChild], first using
/// [forgetChild] to cause the old parent to update its child model.
@protected
void deactivateChild(Element child) {
assert(child != null);
assert(child._parent == this);
child._parent = null;
child.detachRenderObject();
owner._inactiveElements.add(child); // this eventually calls child.deactivate()
assert(() {
if (debugPrintGlobalKeyedWidgetLifecycle) {
if (child.widget.key is GlobalKey)
debugPrint('Deactivated $child (keyed child of $this)');
}
return true;
}());
}
/// Remove the given child from the element's child list, in preparation for
/// the child being reused elsewhere in the element tree.
///
/// This updates the child model such that, e.g., [visitChildren] does not
/// walk that child anymore.
///
/// The element will still have a valid parent when this is called. After this
/// is called, [deactivateChild] is called to sever the link to this object.
@protected
void forgetChild(Element child);
void _activateWithParent(Element parent, dynamic newSlot) {
assert(_debugLifecycleState == _ElementLifecycle.inactive);
_parent = parent;
assert(() {
if (debugPrintGlobalKeyedWidgetLifecycle)
debugPrint('Reactivating $this (now child of $_parent).');
return true;
}());
_updateDepth(_parent.depth);
_activateRecursively(this);
attachRenderObject(newSlot);
assert(_debugLifecycleState == _ElementLifecycle.active);
}
static void _activateRecursively(Element element) {
assert(element._debugLifecycleState == _ElementLifecycle.inactive);
element.activate();
assert(element._debugLifecycleState == _ElementLifecycle.active);
element.visitChildren(_activateRecursively);
}
/// Transition from the "inactive" to the "active" lifecycle state.
///
/// The framework calls this method when a previously deactivated element has
/// been reincorporated into the tree. The framework does not call this method
/// the first time an element becomes active (i.e., from the "initial"
/// lifecycle state). Instead, the framework calls [mount] in that situation.
///
/// See the lifecycle documentation for [Element] for additional information.
@mustCallSuper
void activate() {
assert(_debugLifecycleState == _ElementLifecycle.inactive);
assert(widget != null);
assert(owner != null);
assert(depth != null);
assert(!_active);
final bool hadDependencies = (_dependencies != null && _dependencies.isNotEmpty) || _hadUnsatisfiedDependencies;
_active = true;
// We unregistered our dependencies in deactivate, but never cleared the list.
// Since we're going to be reused, let's clear our list now.
_dependencies?.clear();
_hadUnsatisfiedDependencies = false;
_updateInheritance();
assert(() {
_debugLifecycleState = _ElementLifecycle.active;
return true;
}());
if (_dirty)
owner.scheduleBuildFor(this);
if (hadDependencies)
didChangeDependencies();
}
/// Transition from the "active" to the "inactive" lifecycle state.
///
/// The framework calls this method when a previously active element is moved
/// to the list of inactive elements. While in the inactive state, the element
/// will not appear on screen. The element can remain in the inactive state
/// only until the end of the current animation frame. At the end of the
/// animation frame, if the element has not be reactivated, the framework will
/// unmount the element.
///
/// This is (indirectly) called by [deactivateChild].
///
/// See the lifecycle documentation for [Element] for additional information.
@mustCallSuper
void deactivate() {
assert(_debugLifecycleState == _ElementLifecycle.active);
assert(widget != null);
assert(depth != null);
assert(_active);
if (_dependencies != null && _dependencies.isNotEmpty) {
for (final InheritedElement dependency in _dependencies)
dependency._dependents.remove(this);
// For expediency, we don't actually clear the list here, even though it's
// no longer representative of what we are registered with. If we never
// get re-used, it doesn't matter. If we do, then we'll clear the list in
// activate(). The benefit of this is that it allows Element's activate()
// implementation to decide whether to rebuild based on whether we had
// dependencies here.
}
_inheritedWidgets = null;
_active = false;
assert(() {
_debugLifecycleState = _ElementLifecycle.inactive;
return true;
}());
}
/// Called, in debug mode, after children have been deactivated (see [deactivate]).
///
/// This method is not called in release builds.
@mustCallSuper
void debugDeactivated() {
assert(_debugLifecycleState == _ElementLifecycle.inactive);
}
/// Transition from the "inactive" to the "defunct" lifecycle state.
///
/// Called when the framework determines that an inactive element will never
/// be reactivated. At the end of each animation frame, the framework calls
/// [unmount] on any remaining inactive elements, preventing inactive elements
/// from remaining inactive for longer than a single animation frame.
///
/// After this function is called, the element will not be incorporated into
/// the tree again.
///
/// See the lifecycle documentation for [Element] for additional information.
@mustCallSuper
void unmount() {
assert(_debugLifecycleState == _ElementLifecycle.inactive);
assert(widget != null);
assert(depth != null);
assert(!_active);
final Key key = widget.key;
if (key is GlobalKey) {
key._unregister(this);
}
assert(() {
_debugLifecycleState = _ElementLifecycle.defunct;
return true;
}());
}
@override
RenderObject findRenderObject() => renderObject;
@override
Size get size {
assert(() {
if (_debugLifecycleState != _ElementLifecycle.active) {
// TODO(jacobr): is this a good separation into contract and violation?
// I have added a line of white space.
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size of inactive element.'),
ErrorDescription(
'In order for an element to have a valid size, the element must be '
'active, which means it is part of the tree.\n'
'Instead, this element is in the $_debugLifecycleState state.'
),
describeElement('The size getter was called for the following element'),
]);
}
if (owner._debugBuilding) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size during build.'),
ErrorDescription(
'The size of this render object has not yet been determined because '
'the framework is still in the process of building widgets, which '
'means the render tree for this frame has not yet been determined. '
'The size getter should only be called from paint callbacks or '
'interaction event handlers (e.g. gesture callbacks).'
),
ErrorSpacer(),
ErrorHint(
'If you need some sizing information during build to decide which '
'widgets to build, consider using a LayoutBuilder widget, which can '
'tell you the layout constraints at a given location in the tree. See '
'<https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html> '
'for more details.'
),
ErrorSpacer(),
describeElement('The size getter was called for the following element'),
]);
}
return true;
}());
final RenderObject renderObject = findRenderObject();
assert(() {
if (renderObject == null) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size without a render object.'),
ErrorHint(
'In order for an element to have a valid size, the element must have '
'an associated render object. This element does not have an associated '
'render object, which typically means that the size getter was called '
'too early in the pipeline (e.g., during the build phase) before the '
'framework has created the render tree.'
),
describeElement('The size getter was called for the following element'),
]);
}
if (renderObject is RenderSliver) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size from a RenderSliver.'),
ErrorHint(
'The render object associated with this element is a '
'${renderObject.runtimeType}, which is a subtype of RenderSliver. '
'Slivers do not have a size per se. They have a more elaborate '
'geometry description, which can be accessed by calling '
'findRenderObject and then using the "geometry" getter on the '
'resulting object.'
),
describeElement('The size getter was called for the following element'),
renderObject.describeForError('The associated render sliver was'),
]);
}
if (renderObject is! RenderBox) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size from a render object that is not a RenderBox.'),
ErrorHint(
'Instead of being a subtype of RenderBox, the render object associated '
'with this element is a ${renderObject.runtimeType}. If this type of '
'render object does have a size, consider calling findRenderObject '
'and extracting its size manually.'
),
describeElement('The size getter was called for the following element'),
renderObject.describeForError('The associated render object was'),
]);
}
final RenderBox box = renderObject as RenderBox;
if (!box.hasSize) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size from a render object that has not been through layout.'),
ErrorHint(
'The size of this render object has not yet been determined because '
'this render object has not yet been through layout, which typically '
'means that the size getter was called too early in the pipeline '
'(e.g., during the build phase) before the framework has determined '
'the size and position of the render objects during layout.'
),
describeElement('The size getter was called for the following element'),
box.describeForError('The render object from which the size was to be obtained was'),
]);
}
if (box.debugNeedsLayout) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Cannot get size from a render object that has been marked dirty for layout.'),
ErrorHint(
'The size of this render object is ambiguous because this render object has '
'been modified since it was last laid out, which typically means that the size '
'getter was called too early in the pipeline (e.g., during the build phase) '
'before the framework has determined the size and position of the render '
'objects during layout.'
),
describeElement('The size getter was called for the following element'),
box.describeForError('The render object from which the size was to be obtained was'),
ErrorHint(
'Consider using debugPrintMarkNeedsLayoutStacks to determine why the render '
'object in question is dirty, if you did not expect this.'
),
]);
}
return true;
}());
if (renderObject is RenderBox)
return renderObject.size;
return null;
}
Map<Type, InheritedElement> _inheritedWidgets;
Set<InheritedElement> _dependencies;
bool _hadUnsatisfiedDependencies = false;
bool _debugCheckStateIsActiveForAncestorLookup() {
assert(() {
if (_debugLifecycleState != _ElementLifecycle.active) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Looking up a deactivated widget\'s ancestor is unsafe.'),
ErrorDescription(
'At this point the state of the widget\'s element tree is no longer '
'stable.'
),
ErrorHint(
'To safely refer to a widget\'s ancestor in its dispose() method, '
'save a reference to the ancestor by calling dependOnInheritedWidgetOfExactType() '
'in the widget\'s didChangeDependencies() method.'
),
]);
}
return true;
}());
return true;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use dependOnInheritedElement instead. '
'This feature was deprecated after v1.12.1.'
)
@override
InheritedWidget inheritFromElement(InheritedElement ancestor, { Object aspect }) {
return dependOnInheritedElement(ancestor, aspect: aspect);
}
@override
InheritedWidget dependOnInheritedElement(InheritedElement ancestor, { Object aspect }) {
assert(ancestor != null);
_dependencies ??= HashSet<InheritedElement>();
_dependencies.add(ancestor);
ancestor.updateDependencies(this, aspect);
return ancestor.widget;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use dependOnInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
InheritedWidget inheritFromWidgetOfExactType(Type targetType, { Object aspect }) {
assert(_debugCheckStateIsActiveForAncestorLookup());
final InheritedElement ancestor = _inheritedWidgets == null ? null : _inheritedWidgets[targetType];
if (ancestor != null) {
assert(ancestor is InheritedElement);
return inheritFromElement(ancestor, aspect: aspect);
}
_hadUnsatisfiedDependencies = true;
return null;
}
@override
T dependOnInheritedWidgetOfExactType<T extends InheritedWidget>({Object aspect}) {
assert(_debugCheckStateIsActiveForAncestorLookup());
final InheritedElement ancestor = _inheritedWidgets == null ? null : _inheritedWidgets[T];
if (ancestor != null) {
assert(ancestor is InheritedElement);
return dependOnInheritedElement(ancestor, aspect: aspect) as T;
}
_hadUnsatisfiedDependencies = true;
return null;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use getElementForInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
InheritedElement ancestorInheritedElementForWidgetOfExactType(Type targetType) {
assert(_debugCheckStateIsActiveForAncestorLookup());
final InheritedElement ancestor = _inheritedWidgets == null ? null : _inheritedWidgets[targetType];
return ancestor;
}
@override
InheritedElement getElementForInheritedWidgetOfExactType<T extends InheritedWidget>() {
assert(_debugCheckStateIsActiveForAncestorLookup());
final InheritedElement ancestor = _inheritedWidgets == null ? null : _inheritedWidgets[T];
return ancestor;
}
void _updateInheritance() {
assert(_active);
_inheritedWidgets = _parent?._inheritedWidgets;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
Widget ancestorWidgetOfExactType(Type targetType) {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null && ancestor.widget.runtimeType != targetType)
ancestor = ancestor._parent;
return ancestor?.widget;
}
@override
T findAncestorWidgetOfExactType<T extends Widget>() {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null && ancestor.widget.runtimeType != T)
ancestor = ancestor._parent;
return ancestor?.widget as T;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
State ancestorStateOfType(TypeMatcher matcher) {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null) {
if (ancestor is StatefulElement && matcher.check(ancestor.state))
break;
ancestor = ancestor._parent;
}
final StatefulElement statefulAncestor = ancestor as StatefulElement;
return statefulAncestor?.state;
}
@override
T findAncestorStateOfType<T extends State<StatefulWidget>>() {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null) {
if (ancestor is StatefulElement && ancestor.state is T)
break;
ancestor = ancestor._parent;
}
final StatefulElement statefulAncestor = ancestor as StatefulElement;
return statefulAncestor?.state as T;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findRootAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
State rootAncestorStateOfType(TypeMatcher matcher) {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
StatefulElement statefulAncestor;
while (ancestor != null) {
if (ancestor is StatefulElement && matcher.check(ancestor.state))
statefulAncestor = ancestor;
ancestor = ancestor._parent;
}
return statefulAncestor?.state;
}
@override
T findRootAncestorStateOfType<T extends State<StatefulWidget>>() {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
StatefulElement statefulAncestor;
while (ancestor != null) {
if (ancestor is StatefulElement && ancestor.state is T)
statefulAncestor = ancestor;
ancestor = ancestor._parent;
}
return statefulAncestor?.state as T;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use findAncestorRenderObjectOfType instead. '
'This feature was deprecated after v1.12.1.'
)
@override
RenderObject ancestorRenderObjectOfType(TypeMatcher matcher) {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null) {
if (ancestor is RenderObjectElement && matcher.check(ancestor.renderObject))
return ancestor.renderObject;
ancestor = ancestor._parent;
}
return null;
}
@override
T findAncestorRenderObjectOfType<T extends RenderObject>() {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null) {
if (ancestor is RenderObjectElement && ancestor.renderObject is T)
return ancestor.renderObject as T;
ancestor = ancestor._parent;
}
return null;
}
@override
void visitAncestorElements(bool visitor(Element element)) {
assert(_debugCheckStateIsActiveForAncestorLookup());
Element ancestor = _parent;
while (ancestor != null && visitor(ancestor))
ancestor = ancestor._parent;
}
/// Called when a dependency of this element changes.
///
/// The [dependOnInheritedWidgetOfExactType] registers this element as depending on
/// inherited information of the given type. When the information of that type
/// changes at this location in the tree (e.g., because the [InheritedElement]
/// updated to a new [InheritedWidget] and
/// [InheritedWidget.updateShouldNotify] returned true), the framework calls
/// this function to notify this element of the change.
@mustCallSuper
void didChangeDependencies() {
assert(_active); // otherwise markNeedsBuild is a no-op
assert(_debugCheckOwnerBuildTargetExists('didChangeDependencies'));
markNeedsBuild();
}
bool _debugCheckOwnerBuildTargetExists(String methodName) {
assert(() {
if (owner._debugCurrentBuildTarget == null) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary(
'$methodName for ${widget.runtimeType} was called at an '
'inappropriate time.'
),
ErrorDescription('It may only be called while the widgets are being built.'),
ErrorHint(
'A possible cause of this error is when $methodName is called during '
'one of:\n'
' * network I/O event\n'
' * file I/O event\n'
' * timer\n'
' * microtask (caused by Future.then, async/await, scheduleMicrotask)'
),
]);
}
return true;
}());
return true;
}
/// Returns a description of what caused this element to be created.
///
/// Useful for debugging the source of an element.
String debugGetCreatorChain(int limit) {
final List<String> chain = <String>[];
Element node = this;
while (chain.length < limit && node != null) {
chain.add(node.toStringShort());
node = node._parent;
}
if (node != null)
chain.add('\u22EF');
return chain.join(' \u2190 ');
}
/// Returns the parent chain from this element back to the root of the tree.
///
/// Useful for debug display of a tree of Elements with only nodes in the path
/// from the root to this Element expanded.
List<Element> debugGetDiagnosticChain() {
final List<Element> chain = <Element>[this];
Element node = _parent;
while (node != null) {
chain.add(node);
node = node._parent;
}
return chain;
}
/// A short, textual description of this element.
@override
String toStringShort() {
return widget != null ? '${widget.toStringShort()}' : '[$runtimeType]';
}
@override
DiagnosticsNode toDiagnosticsNode({ String name, DiagnosticsTreeStyle style }) {
return _ElementDiagnosticableTreeNode(
name: name,
value: this,
style: style,
);
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.defaultDiagnosticsTreeStyle= DiagnosticsTreeStyle.dense;
properties.add(ObjectFlagProperty<int>('depth', depth, ifNull: 'no depth'));
properties.add(ObjectFlagProperty<Widget>('widget', widget, ifNull: 'no widget'));
if (widget != null) {
properties.add(DiagnosticsProperty<Key>('key', widget?.key, showName: false, defaultValue: null, level: DiagnosticLevel.hidden));
widget.debugFillProperties(properties);
}
properties.add(FlagProperty('dirty', value: dirty, ifTrue: 'dirty'));
if (_dependencies != null && _dependencies.isNotEmpty) {
final List<DiagnosticsNode> diagnosticsDependencies = _dependencies
.map((InheritedElement element) => element.widget.toDiagnosticsNode(style: DiagnosticsTreeStyle.sparse))
.toList();
properties.add(DiagnosticsProperty<List<DiagnosticsNode>>('dependencies', diagnosticsDependencies));
}
}
@override
List<DiagnosticsNode> debugDescribeChildren() {
final List<DiagnosticsNode> children = <DiagnosticsNode>[];
visitChildren((Element child) {
if (child != null) {
children.add(child.toDiagnosticsNode());
} else {
children.add(DiagnosticsNode.message('<null child>'));
}
});
return children;
}
/// Returns true if the element has been marked as needing rebuilding.
bool get dirty => _dirty;
bool _dirty = true;
// Whether this is in owner._dirtyElements. This is used to know whether we
// should be adding the element back into the list when it's reactivated.
bool _inDirtyList = false;
// Whether we've already built or not. Set in [rebuild].
bool _debugBuiltOnce = false;
// We let widget authors call setState from initState, didUpdateWidget, and
// build even when state is locked because its convenient and a no-op anyway.
// This flag ensures that this convenience is only allowed on the element
// currently undergoing initState, didUpdateWidget, or build.
bool _debugAllowIgnoredCallsToMarkNeedsBuild = false;
bool _debugSetAllowIgnoredCallsToMarkNeedsBuild(bool value) {
assert(_debugAllowIgnoredCallsToMarkNeedsBuild == !value);
_debugAllowIgnoredCallsToMarkNeedsBuild = value;
return true;
}
/// Marks the element as dirty and adds it to the global list of widgets to
/// rebuild in the next frame.
///
/// Since it is inefficient to build an element twice in one frame,
/// applications and widgets should be structured so as to only mark
/// widgets dirty during event handlers before the frame begins, not during
/// the build itself.
void markNeedsBuild() {
assert(_debugLifecycleState != _ElementLifecycle.defunct);
if (!_active)
return;
assert(owner != null);
assert(_debugLifecycleState == _ElementLifecycle.active);
assert(() {
if (owner._debugBuilding) {
assert(owner._debugCurrentBuildTarget != null);
assert(owner._debugStateLocked);
if (_debugIsInScope(owner._debugCurrentBuildTarget))
return true;
if (!_debugAllowIgnoredCallsToMarkNeedsBuild) {
final List<DiagnosticsNode> information = <DiagnosticsNode>[
ErrorSummary('setState() or markNeedsBuild() called during build.'),
ErrorDescription(
'This ${widget.runtimeType} widget cannot be marked as needing to build because the framework '
'is already in the process of building widgets. A widget can be marked as '
'needing to be built during the build phase only if one of its ancestors '
'is currently building. This exception is allowed because the framework '
'builds parent widgets before children, which means a dirty descendant '
'will always be built. Otherwise, the framework might not visit this '
'widget during this build phase.'
),
describeElement(
'The widget on which setState() or markNeedsBuild() was called was',
),
];
if (owner._debugCurrentBuildTarget != null)
information.add(owner._debugCurrentBuildTarget.describeWidget('The widget which was currently being built when the offending call was made was'));
throw FlutterError.fromParts(information);
}
assert(dirty); // can only get here if we're not in scope, but ignored calls are allowed, and our call would somehow be ignored (since we're already dirty)
} else if (owner._debugStateLocked) {
assert(!_debugAllowIgnoredCallsToMarkNeedsBuild);
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('setState() or markNeedsBuild() called when widget tree was locked.'),
ErrorDescription(
'This ${widget.runtimeType} widget cannot be marked as needing to build '
'because the framework is locked.'
),
describeElement('The widget on which setState() or markNeedsBuild() was called was'),
]);
}
return true;
}());
if (dirty)
return;
_dirty = true;
owner.scheduleBuildFor(this);
}
/// Called by the [BuildOwner] when [BuildOwner.scheduleBuildFor] has been
/// called to mark this element dirty, by [mount] when the element is first
/// built, and by [update] when the widget has changed.
void rebuild() {
assert(_debugLifecycleState != _ElementLifecycle.initial);
if (!_active || !_dirty)
return;
assert(() {
if (debugOnRebuildDirtyWidget != null) {
debugOnRebuildDirtyWidget(this, _debugBuiltOnce);
}
if (debugPrintRebuildDirtyWidgets) {
if (!_debugBuiltOnce) {
debugPrint('Building $this');
_debugBuiltOnce = true;
} else {
debugPrint('Rebuilding $this');
}
}
return true;
}());
assert(_debugLifecycleState == _ElementLifecycle.active);
assert(owner._debugStateLocked);
Element debugPreviousBuildTarget;
assert(() {
debugPreviousBuildTarget = owner._debugCurrentBuildTarget;
owner._debugCurrentBuildTarget = this;
return true;
}());
performRebuild();
assert(() {
assert(owner._debugCurrentBuildTarget == this);
owner._debugCurrentBuildTarget = debugPreviousBuildTarget;
return true;
}());
assert(!_dirty);
}
/// Called by rebuild() after the appropriate checks have been made.
@protected
void performRebuild();
}
class _ElementDiagnosticableTreeNode extends DiagnosticableTreeNode {
_ElementDiagnosticableTreeNode({
String name,
@required Element value,
@required DiagnosticsTreeStyle style,
this.stateful = false,
}) : super(
name: name,
value: value,
style: style,
);
final bool stateful;
@override
Map<String, Object> toJsonMap(DiagnosticsSerializationDelegate delegate) {
final Map<String, Object> json = super.toJsonMap(delegate);
final Element element = value as Element;
json['widgetRuntimeType'] = element.widget?.runtimeType?.toString();
json['stateful'] = stateful;
return json;
}
}
/// Signature for the constructor that is called when an error occurs while
/// building a widget.
///
/// The argument provides information regarding the cause of the error.
///
/// See also:
///
/// * [ErrorWidget.builder], which can be set to override the default
/// [ErrorWidget] builder.
/// * [FlutterError.reportError], which is typically called with the same
/// [FlutterErrorDetails] object immediately prior to [ErrorWidget.builder]
/// being called.
typedef ErrorWidgetBuilder = Widget Function(FlutterErrorDetails details);
/// A widget that renders an exception's message.
///
/// This widget is used when a build method fails, to help with determining
/// where the problem lies. Exceptions are also logged to the console, which you
/// can read using `flutter logs`. The console will also include additional
/// information such as the stack trace for the exception.
///
/// It is possible to override this widget.
///
/// {@tool sample --template=freeform}
/// ```dart
/// import 'package:flutter/material.dart';
///
/// void main() {
/// ErrorWidget.builder = (FlutterErrorDetails details) {
/// bool inDebug = false;
/// assert(() { inDebug = true; return true; }());
/// // In debug mode, use the normal error widget which shows
/// // the error message:
/// if (inDebug)
/// return ErrorWidget(details.exception);
/// // In release builds, show a yellow-on-blue message instead:
/// return Container(
/// alignment: Alignment.center,
/// child: Text(
/// 'Error!',
/// style: TextStyle(color: Colors.yellow),
/// textDirection: TextDirection.ltr,
/// ),
/// );
/// };
/// // Here we would normally runApp() the root widget, but to demonstrate
/// // the error handling we artificially fail:
/// return runApp(Builder(
/// builder: (BuildContext context) {
/// throw 'oh no, an error';
/// },
/// ));
/// }
/// ```
/// {@end-tool}
///
/// See also:
///
/// * [FlutterError.onError], which can be set to a method that exits the
/// application if that is preferable to showing an error message.
/// * <https://flutter.dev/docs/testing/errors>, more information about error
/// handling in Flutter.
class ErrorWidget extends LeafRenderObjectWidget {
/// Creates a widget that displays the given exception.
///
/// The message will be the stringification of the given exception, unless
/// computing that value itself throws an exception, in which case it will
/// be the string "Error".
///
/// If this object is inspected from an IDE or the devtools, and the original
/// exception is a [FlutterError] object, the original exception itself will
/// be shown in the inspection output.
ErrorWidget(Object exception)
: message = _stringify(exception),
_flutterError = exception is FlutterError ? exception : null,
super(key: UniqueKey());
/// Creates a widget that displays the given error message.
///
/// An explicit [FlutterError] can be provided to be reported to inspection
/// tools. It need not match the message.
ErrorWidget.withDetails({ this.message = '', FlutterError error })
: _flutterError = error,
super(key: UniqueKey());
/// The configurable factory for [ErrorWidget].
///
/// When an error occurs while building a widget, the broken widget is
/// replaced by the widget returned by this function. By default, an
/// [ErrorWidget] is returned.
///
/// The system is typically in an unstable state when this function is called.
/// An exception has just been thrown in the middle of build (and possibly
/// layout), so surrounding widgets and render objects may be in a rather
/// fragile state. The framework itself (especially the [BuildOwner]) may also
/// be confused, and additional exceptions are quite likely to be thrown.
///
/// Because of this, it is highly recommended that the widget returned from
/// this function perform the least amount of work possible. A
/// [LeafRenderObjectWidget] is the best choice, especially one that
/// corresponds to a [RenderBox] that can handle the most absurd of incoming
/// constraints. The default constructor maps to a [RenderErrorBox].
///
/// The default behavior is to show the exception's message in debug mode,
/// and to show nothing but a gray background in release builds.
///
/// See also:
///
/// * [FlutterError.onError], which is typically called with the same
/// [FlutterErrorDetails] object immediately prior to this callback being
/// invoked, and which can also be configured to control how errors are
/// reported.
/// * <https://flutter.dev/docs/testing/errors>, more information about error
/// handling in Flutter.
static ErrorWidgetBuilder builder = _defaultErrorWidgetBuilder;
static Widget _defaultErrorWidgetBuilder(FlutterErrorDetails details) {
String message = '';
assert(() {
message = _stringify(details.exception) + '\nSee also: https://flutter.dev/docs/testing/errors';
return true;
}());
final Object exception = details.exception;
return ErrorWidget.withDetails(message: message, error: exception is FlutterError ? exception : null);
}
static String _stringify(Object exception) {
try {
return exception.toString();
} catch (e) {
// intentionally left empty.
}
return 'Error';
}
/// The message to display.
final String message;
final FlutterError _flutterError;
@override
RenderBox createRenderObject(BuildContext context) => RenderErrorBox(message);
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
if (_flutterError == null)
properties.add(StringProperty('message', message, quoted: false));
else
properties.add(_flutterError.toDiagnosticsNode(style: DiagnosticsTreeStyle.whitespace));
}
}
/// Signature for a function that creates a widget, e.g. [StatelessWidget.build]
/// or [State.build].
///
/// Used by [Builder.builder], [OverlayEntry.builder], etc.
///
/// See also:
///
/// * [IndexedWidgetBuilder], which is similar but also takes an index.
/// * [TransitionBuilder], which is similar but also takes a child.
/// * [ValueWidgetBuilder], which is similar but takes a value and a child.
typedef WidgetBuilder = Widget Function(BuildContext context);
/// Signature for a function that creates a widget for a given index, e.g., in a
/// list.
///
/// Used by [ListView.builder] and other APIs that use lazily-generated widgets.
///
/// See also:
///
/// * [WidgetBuilder], which is similar but only takes a [BuildContext].
/// * [TransitionBuilder], which is similar but also takes a child.
typedef IndexedWidgetBuilder = Widget Function(BuildContext context, int index);
/// A builder that builds a widget given a child.
///
/// The child should typically be part of the returned widget tree.
///
/// Used by [AnimatedBuilder.builder], as well as [WidgetsApp.builder] and
/// [MaterialApp.builder].
///
/// See also:
///
/// * [WidgetBuilder], which is similar but only takes a [BuildContext].
/// * [IndexedWidgetBuilder], which is similar but also takes an index.
/// * [ValueWidgetBuilder], which is similar but takes a value and a child.
typedef TransitionBuilder = Widget Function(BuildContext context, Widget child);
/// A builder that creates a widget given the two callbacks `onStepContinue` and
/// `onStepCancel`.
///
/// Used by [Stepper.builder].
///
/// See also:
///
/// * [WidgetBuilder], which is similar but only takes a [BuildContext].
typedef ControlsWidgetBuilder = Widget Function(BuildContext context, { VoidCallback onStepContinue, VoidCallback onStepCancel });
/// An [Element] that composes other [Element]s.
///
/// Rather than creating a [RenderObject] directly, a [ComponentElement] creates
/// [RenderObject]s indirectly by creating other [Element]s.
///
/// Contrast with [RenderObjectElement].
abstract class ComponentElement extends Element {
/// Creates an element that uses the given widget as its configuration.
ComponentElement(Widget widget) : super(widget);
Element _child;
@override
void mount(Element parent, dynamic newSlot) {
super.mount(parent, newSlot);
assert(_child == null);
assert(_active);
_firstBuild();
assert(_child != null);
}
void _firstBuild() {
rebuild();
}
/// Calls the [StatelessWidget.build] method of the [StatelessWidget] object
/// (for stateless widgets) or the [State.build] method of the [State] object
/// (for stateful widgets) and then updates the widget tree.
///
/// Called automatically during [mount] to generate the first build, and by
/// [rebuild] when the element needs updating.
@override
void performRebuild() {
if (!kReleaseMode && debugProfileBuildsEnabled)
Timeline.startSync('${widget.runtimeType}', arguments: timelineWhitelistArguments);
assert(_debugSetAllowIgnoredCallsToMarkNeedsBuild(true));
Widget built;
try {
built = build();
debugWidgetBuilderValue(widget, built);
} catch (e, stack) {
built = ErrorWidget.builder(
_debugReportException(
ErrorDescription('building $this'),
e,
stack,
informationCollector: () sync* {
yield DiagnosticsDebugCreator(DebugCreator(this));
},
),
);
} finally {
// We delay marking the element as clean until after calling build() so
// that attempts to markNeedsBuild() during build() will be ignored.
_dirty = false;
assert(_debugSetAllowIgnoredCallsToMarkNeedsBuild(false));
}
try {
_child = updateChild(_child, built, slot);
assert(_child != null);
} catch (e, stack) {
built = ErrorWidget.builder(
_debugReportException(
ErrorDescription('building $this'),
e,
stack,
informationCollector: () sync* {
yield DiagnosticsDebugCreator(DebugCreator(this));
},
),
);
_child = updateChild(null, built, slot);
}
if (!kReleaseMode && debugProfileBuildsEnabled)
Timeline.finishSync();
}
/// Subclasses should override this function to actually call the appropriate
/// `build` function (e.g., [StatelessWidget.build] or [State.build]) for
/// their widget.
@protected
Widget build();
@override
void visitChildren(ElementVisitor visitor) {
if (_child != null)
visitor(_child);
}
@override
void forgetChild(Element child) {
assert(child == _child);
_child = null;
}
}
/// An [Element] that uses a [StatelessWidget] as its configuration.
class StatelessElement extends ComponentElement {
/// Creates an element that uses the given widget as its configuration.
StatelessElement(StatelessWidget widget) : super(widget);
@override
StatelessWidget get widget => super.widget as StatelessWidget;
@override
Widget build() => widget.build(this);
@override
void update(StatelessWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
_dirty = true;
rebuild();
}
}
/// An [Element] that uses a [StatefulWidget] as its configuration.
class StatefulElement extends ComponentElement {
/// Creates an element that uses the given widget as its configuration.
StatefulElement(StatefulWidget widget)
: _state = widget.createState(),
super(widget) {
assert(() {
if (!_state._debugTypesAreRight(widget)) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('StatefulWidget.createState must return a subtype of State<${widget.runtimeType}>'),
ErrorDescription(
'The createState function for ${widget.runtimeType} returned a state '
'of type ${_state.runtimeType}, which is not a subtype of '
'State<${widget.runtimeType}>, violating the contract for createState.'
),
]);
}
return true;
}());
assert(_state._element == null);
_state._element = this;
assert(
_state._widget == null,
'The createState function for $widget returned an old or invalid state '
'instance: ${_state._widget}, which is not null, violating the contract '
'for createState.',
);
_state._widget = widget;
assert(_state._debugLifecycleState == _StateLifecycle.created);
}
@override
Widget build() => state.build(this);
/// The [State] instance associated with this location in the tree.
///
/// There is a one-to-one relationship between [State] objects and the
/// [StatefulElement] objects that hold them. The [State] objects are created
/// by [StatefulElement] in [mount].
State<StatefulWidget> get state => _state;
State<StatefulWidget> _state;
@override
void reassemble() {
state.reassemble();
super.reassemble();
}
@override
void _firstBuild() {
assert(_state._debugLifecycleState == _StateLifecycle.created);
try {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(true);
final dynamic debugCheckForReturnedFuture = _state.initState() as dynamic;
assert(() {
if (debugCheckForReturnedFuture is Future) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${_state.runtimeType}.initState() returned a Future.'),
ErrorDescription('State.initState() must be a void method without an `async` keyword.'),
ErrorHint(
'Rather than awaiting on asynchronous work directly inside of initState, '
'call a separate method to do this work without awaiting it.'
),
]);
}
return true;
}());
} finally {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(false);
}
assert(() {
_state._debugLifecycleState = _StateLifecycle.initialized;
return true;
}());
_state.didChangeDependencies();
assert(() {
_state._debugLifecycleState = _StateLifecycle.ready;
return true;
}());
super._firstBuild();
}
@override
void update(StatefulWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
final StatefulWidget oldWidget = _state._widget;
// Notice that we mark ourselves as dirty before calling didUpdateWidget to
// let authors call setState from within didUpdateWidget without triggering
// asserts.
_dirty = true;
_state._widget = widget as StatefulWidget;
try {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(true);
final dynamic debugCheckForReturnedFuture = _state.didUpdateWidget(oldWidget) as dynamic;
assert(() {
if (debugCheckForReturnedFuture is Future) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${_state.runtimeType}.didUpdateWidget() returned a Future.'),
ErrorDescription( 'State.didUpdateWidget() must be a void method without an `async` keyword.'),
ErrorHint(
'Rather than awaiting on asynchronous work directly inside of didUpdateWidget, '
'call a separate method to do this work without awaiting it.'
),
]);
}
return true;
}());
} finally {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(false);
}
rebuild();
}
@override
void activate() {
super.activate();
// Since the State could have observed the deactivate() and thus disposed of
// resources allocated in the build method, we have to rebuild the widget
// so that its State can reallocate its resources.
assert(_active); // otherwise markNeedsBuild is a no-op
markNeedsBuild();
}
@override
void deactivate() {
_state.deactivate();
super.deactivate();
}
@override
void unmount() {
super.unmount();
_state.dispose();
assert(() {
if (_state._debugLifecycleState == _StateLifecycle.defunct)
return true;
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${_state.runtimeType}.dispose failed to call super.dispose.'),
ErrorDescription(
'dispose() implementations must always call their superclass dispose() method, to ensure '
'that all the resources used by the widget are fully released.'
),
]);
}());
_state._element = null;
_state = null;
}
// TODO(a14n): Remove this when it goes to stable, https://github.com/flutter/flutter/pull/44189
@Deprecated(
'Use dependOnInheritedElement instead. '
'This feature was deprecated after v1.12.1.'
)
@override
InheritedWidget inheritFromElement(Element ancestor, { Object aspect }) {
return dependOnInheritedElement(ancestor, aspect: aspect);
}
@override
InheritedWidget dependOnInheritedElement(Element ancestor, { Object aspect }) {
assert(ancestor != null);
assert(() {
final Type targetType = ancestor.widget.runtimeType;
if (state._debugLifecycleState == _StateLifecycle.created) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('dependOnInheritedWidgetOfExactType<$targetType>() or dependOnInheritedElement() was called before ${_state.runtimeType}.initState() completed.'),
ErrorDescription(
'When an inherited widget changes, for example if the value of Theme.of() changes, '
'its dependent widgets are rebuilt. If the dependent widget\'s reference to '
'the inherited widget is in a constructor or an initState() method, '
'then the rebuilt dependent widget will not reflect the changes in the '
'inherited widget.',
),
ErrorHint(
'Typically references to inherited widgets should occur in widget build() methods. Alternatively, '
'initialization based on inherited widgets can be placed in the didChangeDependencies method, which '
'is called after initState and whenever the dependencies change thereafter.'
),
]);
}
if (state._debugLifecycleState == _StateLifecycle.defunct) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('dependOnInheritedWidgetOfExactType<$targetType>() or dependOnInheritedElement() was called after dispose(): $this'),
ErrorDescription(
'This error happens if you call dependOnInheritedWidgetOfExactType() on the '
'BuildContext for a widget that no longer appears in the widget tree '
'(e.g., whose parent widget no longer includes the widget in its '
'build). This error can occur when code calls '
'dependOnInheritedWidgetOfExactType() from a timer or an animation callback.'
),
ErrorHint(
'The preferred solution is to cancel the timer or stop listening to the '
'animation in the dispose() callback. Another solution is to check the '
'"mounted" property of this object before calling '
'dependOnInheritedWidgetOfExactType() to ensure the object is still in the '
'tree.'
),
ErrorHint(
'This error might indicate a memory leak if '
'dependOnInheritedWidgetOfExactType() is being called because another object '
'is retaining a reference to this State object after it has been '
'removed from the tree. To avoid memory leaks, consider breaking the '
'reference to this object during dispose().'
),
]);
}
return true;
}());
return super.dependOnInheritedElement(ancestor as InheritedElement, aspect: aspect);
}
@override
void didChangeDependencies() {
super.didChangeDependencies();
_state.didChangeDependencies();
}
@override
DiagnosticsNode toDiagnosticsNode({ String name, DiagnosticsTreeStyle style }) {
return _ElementDiagnosticableTreeNode(
name: name,
value: this,
style: style,
stateful: true,
);
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<State<StatefulWidget>>('state', state, defaultValue: null));
}
}
/// An [Element] that uses a [ProxyWidget] as its configuration.
abstract class ProxyElement extends ComponentElement {
/// Initializes fields for subclasses.
ProxyElement(ProxyWidget widget) : super(widget);
@override
ProxyWidget get widget => super.widget as ProxyWidget;
@override
Widget build() => widget.child;
@override
void update(ProxyWidget newWidget) {
final ProxyWidget oldWidget = widget;
assert(widget != null);
assert(widget != newWidget);
super.update(newWidget);
assert(widget == newWidget);
updated(oldWidget);
_dirty = true;
rebuild();
}
/// Called during build when the [widget] has changed.
///
/// By default, calls [notifyClients]. Subclasses may override this method to
/// avoid calling [notifyClients] unnecessarily (e.g. if the old and new
/// widgets are equivalent).
@protected
void updated(covariant ProxyWidget oldWidget) {
notifyClients(oldWidget);
}
/// Notify other objects that the widget associated with this element has
/// changed.
///
/// Called during [update] (via [updated]) after changing the widget
/// associated with this element but before rebuilding this element.
@protected
void notifyClients(covariant ProxyWidget oldWidget);
}
/// An [Element] that uses a [ParentDataWidget] as its configuration.
class ParentDataElement<T extends RenderObjectWidget> extends ProxyElement {
/// Creates an element that uses the given widget as its configuration.
ParentDataElement(ParentDataWidget<T> widget) : super(widget);
@override
ParentDataWidget<T> get widget => super.widget as ParentDataWidget<T>;
@override
void mount(Element parent, dynamic newSlot) {
assert(() {
final List<Widget> badAncestors = <Widget>[];
Element ancestor = parent;
while (ancestor != null) {
if (ancestor is ParentDataElement<RenderObjectWidget>) {
badAncestors.add(ancestor.widget);
} else if (ancestor is RenderObjectElement) {
if (widget.debugIsValidAncestor(ancestor.widget))
break;
badAncestors.add(ancestor.widget);
}
ancestor = ancestor._parent;
}
if (ancestor != null && badAncestors.isEmpty)
return true;
// TODO(jacobr): switch to describing the invalid parent chain in terms
// of DiagnosticsNode objects when possible.
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('Incorrect use of ParentDataWidget.'),
// TODO(jacobr): fix this constructor call to use FlutterErrorBuilder.
...widget.debugDescribeInvalidAncestorChain(
description: '$this',
ownershipChain: ErrorDescription(parent.debugGetCreatorChain(10)),
foundValidAncestor: ancestor != null,
badAncestors: badAncestors,
),
]);
}());
super.mount(parent, newSlot);
}
void _applyParentData(ParentDataWidget<T> widget) {
void applyParentDataToChild(Element child) {
if (child is RenderObjectElement) {
child._updateParentData(widget);
} else {
assert(child is! ParentDataElement<RenderObjectWidget>);
child.visitChildren(applyParentDataToChild);
}
}
visitChildren(applyParentDataToChild);
}
/// Calls [ParentDataWidget.applyParentData] on the given widget, passing it
/// the [RenderObject] whose parent data this element is ultimately
/// responsible for.
///
/// This allows a render object's [RenderObject.parentData] to be modified
/// without triggering a build. This is generally ill-advised, but makes sense
/// in situations such as the following:
///
/// * Build and layout are currently under way, but the [ParentData] in question
/// does not affect layout, and the value to be applied could not be
/// determined before build and layout (e.g. it depends on the layout of a
/// descendant).
///
/// * Paint is currently under way, but the [ParentData] in question does not
/// affect layout or paint, and the value to be applied could not be
/// determined before paint (e.g. it depends on the compositing phase).
///
/// In either case, the next build is expected to cause this element to be
/// configured with the given new widget (or a widget with equivalent data).
///
/// Only [ParentDataWidget]s that return true for
/// [ParentDataWidget.debugCanApplyOutOfTurn] can be applied this way.
///
/// The new widget must have the same child as the current widget.
///
/// An example of when this is used is the [AutomaticKeepAlive] widget. If it
/// receives a notification during the build of one of its descendants saying
/// that its child must be kept alive, it will apply a [KeepAlive] widget out
/// of turn. This is safe, because by definition the child is already alive,
/// and therefore this will not change the behavior of the parent this frame.
/// It is more efficient than requesting an additional frame just for the
/// purpose of updating the [KeepAlive] widget.
void applyWidgetOutOfTurn(ParentDataWidget<T> newWidget) {
assert(newWidget != null);
assert(newWidget.debugCanApplyOutOfTurn());
assert(newWidget.child == widget.child);
_applyParentData(newWidget);
}
@override
void notifyClients(ParentDataWidget<T> oldWidget) {
_applyParentData(widget);
}
}
/// An [Element] that uses an [InheritedWidget] as its configuration.
class InheritedElement extends ProxyElement {
/// Creates an element that uses the given widget as its configuration.
InheritedElement(InheritedWidget widget) : super(widget);
@override
InheritedWidget get widget => super.widget as InheritedWidget;
final Map<Element, Object> _dependents = HashMap<Element, Object>();
@override
void _updateInheritance() {
assert(_active);
final Map<Type, InheritedElement> incomingWidgets = _parent?._inheritedWidgets;
if (incomingWidgets != null)
_inheritedWidgets = HashMap<Type, InheritedElement>.from(incomingWidgets);
else
_inheritedWidgets = HashMap<Type, InheritedElement>();
_inheritedWidgets[widget.runtimeType] = this;
}
@override
void debugDeactivated() {
assert(() {
assert(_dependents.isEmpty);
return true;
}());
super.debugDeactivated();
}
/// Returns the dependencies value recorded for [dependent]
/// with [setDependencies].
///
/// Each dependent element is mapped to a single object value
/// which represents how the element depends on this
/// [InheritedElement]. This value is null by default and by default
/// dependent elements are rebuilt unconditionally.
///
/// Subclasses can manage these values with [updateDependencies]
/// so that they can selectively rebuild dependents in
/// [notifyDependent].
///
/// This method is typically only called in overrides of [updateDependencies].
///
/// See also:
///
/// * [updateDependencies], which is called each time a dependency is
/// created with [dependOnInheritedWidgetOfExactType].
/// * [setDependencies], which sets dependencies value for a dependent
/// element.
/// * [notifyDependent], which can be overridden to use a dependent's
/// dependencies value to decide if the dependent needs to be rebuilt.
/// * [InheritedModel], which is an example of a class that uses this method
/// to manage dependency values.
@protected
Object getDependencies(Element dependent) {
return _dependents[dependent];
}
/// Sets the value returned by [getDependencies] value for [dependent].
///
/// Each dependent element is mapped to a single object value
/// which represents how the element depends on this
/// [InheritedElement]. The [updateDependencies] method sets this value to
/// null by default so that dependent elements are rebuilt unconditionally.
///
/// Subclasses can manage these values with [updateDependencies]
/// so that they can selectively rebuild dependents in [notifyDependent].
///
/// This method is typically only called in overrides of [updateDependencies].
///
/// See also:
///
/// * [updateDependencies], which is called each time a dependency is
/// created with [dependOnInheritedWidgetOfExactType].
/// * [getDependencies], which returns the current value for a dependent
/// element.
/// * [notifyDependent], which can be overridden to use a dependent's
/// [getDependencies] value to decide if the dependent needs to be rebuilt.
/// * [InheritedModel], which is an example of a class that uses this method
/// to manage dependency values.
@protected
void setDependencies(Element dependent, Object value) {
_dependents[dependent] = value;
}
/// Called by [dependOnInheritedWidgetOfExactType] when a new [dependent] is added.
///
/// Each dependent element can be mapped to a single object value with
/// [setDependencies]. This method can lookup the existing dependencies with
/// [getDependencies].
///
/// By default this method sets the inherited dependencies for [dependent]
/// to null. This only serves to record an unconditional dependency on
/// [dependent].
///
/// Subclasses can manage their own dependencies values so that they
/// can selectively rebuild dependents in [notifyDependent].
///
/// See also:
///
/// * [getDependencies], which returns the current value for a dependent
/// element.
/// * [setDependencies], which sets the value for a dependent element.
/// * [notifyDependent], which can be overridden to use a dependent's
/// dependencies value to decide if the dependent needs to be rebuilt.
/// * [InheritedModel], which is an example of a class that uses this method
/// to manage dependency values.
@protected
void updateDependencies(Element dependent, Object aspect) {
setDependencies(dependent, null);
}
/// Called by [notifyClients] for each dependent.
///
/// Calls `dependent.didChangeDependencies()` by default.
///
/// Subclasses can override this method to selectively call
/// [didChangeDependencies] based on the value of [getDependencies].
///
/// See also:
///
/// * [updateDependencies], which is called each time a dependency is
/// created with [dependOnInheritedWidgetOfExactType].
/// * [getDependencies], which returns the current value for a dependent
/// element.
/// * [setDependencies], which sets the value for a dependent element.
/// * [InheritedModel], which is an example of a class that uses this method
/// to manage dependency values.
@protected
void notifyDependent(covariant InheritedWidget oldWidget, Element dependent) {
dependent.didChangeDependencies();
}
/// Calls [Element.didChangeDependencies] of all dependent elements, if
/// [InheritedWidget.updateShouldNotify] returns true.
///
/// Called by [update], immediately prior to [build].
///
/// Calls [notifyClients] to actually trigger the notifications.
@override
void updated(InheritedWidget oldWidget) {
if (widget.updateShouldNotify(oldWidget))
super.updated(oldWidget);
}
/// Notifies all dependent elements that this inherited widget has changed, by
/// calling [Element.didChangeDependencies].
///
/// This method must only be called during the build phase. Usually this
/// method is called automatically when an inherited widget is rebuilt, e.g.
/// as a result of calling [State.setState] above the inherited widget.
///
/// See also:
///
/// * [InheritedNotifier], a subclass of [InheritedWidget] that also calls
/// this method when its [Listenable] sends a notification.
@override
void notifyClients(InheritedWidget oldWidget) {
assert(_debugCheckOwnerBuildTargetExists('notifyClients'));
for (final Element dependent in _dependents.keys) {
assert(() {
// check that it really is our descendant
Element ancestor = dependent._parent;
while (ancestor != this && ancestor != null)
ancestor = ancestor._parent;
return ancestor == this;
}());
// check that it really depends on us
assert(dependent._dependencies.contains(this));
notifyDependent(oldWidget, dependent);
}
}
}
/// An [Element] that uses a [RenderObjectWidget] as its configuration.
///
/// [RenderObjectElement] objects have an associated [RenderObject] widget in
/// the render tree, which handles concrete operations like laying out,
/// painting, and hit testing.
///
/// Contrast with [ComponentElement].
///
/// For details on the lifecycle of an element, see the discussion at [Element].
///
/// ## Writing a RenderObjectElement subclass
///
/// There are three common child models used by most [RenderObject]s:
///
/// * Leaf render objects, with no children: The [LeafRenderObjectElement] class
/// handles this case.
///
/// * A single child: The [SingleChildRenderObjectElement] class handles this
/// case.
///
/// * A linked list of children: The [MultiChildRenderObjectElement] class
/// handles this case.
///
/// Sometimes, however, a render object's child model is more complicated. Maybe
/// it has a two-dimensional array of children. Maybe it constructs children on
/// demand. Maybe it features multiple lists. In such situations, the
/// corresponding [Element] for the [Widget] that configures that [RenderObject]
/// will be a new subclass of [RenderObjectElement].
///
/// Such a subclass is responsible for managing children, specifically the
/// [Element] children of this object, and the [RenderObject] children of its
/// corresponding [RenderObject].
///
/// ### Specializing the getters
///
/// [RenderObjectElement] objects spend much of their time acting as
/// intermediaries between their [widget] and their [renderObject]. To make this
/// more tractable, most [RenderObjectElement] subclasses override these getters
/// so that they return the specific type that the element expects, e.g.:
///
/// ```dart
/// class FooElement extends RenderObjectElement {
///
/// @override
/// Foo get widget => super.widget;
///
/// @override
/// RenderFoo get renderObject => super.renderObject;
///
/// // ...
/// }
/// ```
///
/// ### Slots
///
/// Each child [Element] corresponds to a [RenderObject] which should be
/// attached to this element's render object as a child.
///
/// However, the immediate children of the element may not be the ones that
/// eventually produce the actual [RenderObject] that they correspond to. For
/// example a [StatelessElement] (the element of a [StatelessWidget]) simply
/// corresponds to whatever [RenderObject] its child (the element returned by
/// its [StatelessWidget.build] method) corresponds to.
///
/// Each child is therefore assigned a _slot_ token. This is an identifier whose
/// meaning is private to this [RenderObjectElement] node. When the descendant
/// that finally produces the [RenderObject] is ready to attach it to this
/// node's render object, it passes that slot token back to this node, and that
/// allows this node to cheaply identify where to put the child render object
/// relative to the others in the parent render object.
///
/// ### Updating children
///
/// Early in the lifecycle of an element, the framework calls the [mount]
/// method. This method should call [updateChild] for each child, passing in
/// the widget for that child, and the slot for that child, thus obtaining a
/// list of child [Element]s.
///
/// Subsequently, the framework will call the [update] method. In this method,
/// the [RenderObjectElement] should call [updateChild] for each child, passing
/// in the [Element] that was obtained during [mount] or the last time [update]
/// was run (whichever happened most recently), the new [Widget], and the slot.
/// This provides the object with a new list of [Element] objects.
///
/// Where possible, the [update] method should attempt to map the elements from
/// the last pass to the widgets in the new pass. For example, if one of the
/// elements from the last pass was configured with a particular [Key], and one
/// of the widgets in this new pass has that same key, they should be paired up,
/// and the old element should be updated with the widget (and the slot
/// corresponding to the new widget's new position, also). The [updateChildren]
/// method may be useful in this regard.
///
/// [updateChild] should be called for children in their logical order. The
/// order can matter; for example, if two of the children use [PageStorage]'s
/// `writeState` feature in their build method (and neither has a [Widget.key]),
/// then the state written by the first will be overwritten by the second.
///
/// #### Dynamically determining the children during the build phase
///
/// The child widgets need not necessarily come from this element's widget
/// verbatim. They could be generated dynamically from a callback, or generated
/// in other more creative ways.
///
/// #### Dynamically determining the children during layout
///
/// If the widgets are to be generated at layout time, then generating them when
/// the [update] method won't work: layout of this element's render object
/// hasn't started yet at that point. Instead, the [update] method can mark the
/// render object as needing layout (see [RenderObject.markNeedsLayout]), and
/// then the render object's [RenderObject.performLayout] method can call back
/// to the element to have it generate the widgets and call [updateChild]
/// accordingly.
///
/// For a render object to call an element during layout, it must use
/// [RenderObject.invokeLayoutCallback]. For an element to call [updateChild]
/// outside of its [update] method, it must use [BuildOwner.buildScope].
///
/// The framework provides many more checks in normal operation than it does
/// when doing a build during layout. For this reason, creating widgets with
/// layout-time build semantics should be done with great care.
///
/// #### Handling errors when building
///
/// If an element calls a builder function to obtain widgets for its children,
/// it may find that the build throws an exception. Such exceptions should be
/// caught and reported using [FlutterError.reportError]. If a child is needed
/// but a builder has failed in this way, an instance of [ErrorWidget] can be
/// used instead.
///
/// ### Detaching children
///
/// It is possible, when using [GlobalKey]s, for a child to be proactively
/// removed by another element before this element has been updated.
/// (Specifically, this happens when the subtree rooted at a widget with a
/// particular [GlobalKey] is being moved from this element to an element
/// processed earlier in the build phase.) When this happens, this element's
/// [forgetChild] method will be called with a reference to the affected child
/// element.
///
/// The [forgetChild] method of a [RenderObjectElement] subclass must remove the
/// child element from its child list, so that when it next [update]s its
/// children, the removed child is not considered.
///
/// For performance reasons, if there are many elements, it may be quicker to
/// track which elements were forgotten by storing them in a [Set], rather than
/// proactively mutating the local record of the child list and the identities
/// of all the slots. For example, see the implementation of
/// [MultiChildRenderObjectElement].
///
/// ### Maintaining the render object tree
///
/// Once a descendant produces a render object, it will call
/// [insertChildRenderObject]. If the descendant's slot changes identity, it
/// will call [moveChildRenderObject]. If a descendant goes away, it will call
/// [removeChildRenderObject].
///
/// These three methods should update the render tree accordingly, attaching,
/// moving, and detaching the given child render object from this element's own
/// render object respectively.
///
/// ### Walking the children
///
/// If a [RenderObjectElement] object has any children [Element]s, it must
/// expose them in its implementation of the [visitChildren] method. This method
/// is used by many of the framework's internal mechanisms, and so should be
/// fast. It is also used by the test framework and [debugDumpApp].
abstract class RenderObjectElement extends Element {
/// Creates an element that uses the given widget as its configuration.
RenderObjectElement(RenderObjectWidget widget) : super(widget);
@override
RenderObjectWidget get widget => super.widget as RenderObjectWidget;
/// The underlying [RenderObject] for this element.
@override
RenderObject get renderObject => _renderObject;
RenderObject _renderObject;
RenderObjectElement _ancestorRenderObjectElement;
RenderObjectElement _findAncestorRenderObjectElement() {
Element ancestor = _parent;
while (ancestor != null && ancestor is! RenderObjectElement)
ancestor = ancestor._parent;
return ancestor as RenderObjectElement;
}
ParentDataElement<RenderObjectWidget> _findAncestorParentDataElement() {
Element ancestor = _parent;
while (ancestor != null && ancestor is! RenderObjectElement) {
if (ancestor is ParentDataElement<RenderObjectWidget>)
return ancestor;
ancestor = ancestor._parent;
}
return null;
}
@override
void mount(Element parent, dynamic newSlot) {
super.mount(parent, newSlot);
_renderObject = widget.createRenderObject(this);
assert(() {
_debugUpdateRenderObjectOwner();
return true;
}());
assert(_slot == newSlot);
attachRenderObject(newSlot);
_dirty = false;
}
@override
void update(covariant RenderObjectWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
assert(() {
_debugUpdateRenderObjectOwner();
return true;
}());
widget.updateRenderObject(this, renderObject);
_dirty = false;
}
void _debugUpdateRenderObjectOwner() {
assert(() {
_renderObject.debugCreator = DebugCreator(this);
return true;
}());
}
@override
void performRebuild() {
widget.updateRenderObject(this, renderObject);
_dirty = false;
}
/// Updates the children of this element to use new widgets.
///
/// Attempts to update the given old children list using the given new
/// widgets, removing obsolete elements and introducing new ones as necessary,
/// and then returns the new child list.
///
/// During this function the `oldChildren` list must not be modified. If the
/// caller wishes to remove elements from `oldChildren` re-entrantly while
/// this function is on the stack, the caller can supply a `forgottenChildren`
/// argument, which can be modified while this function is on the stack.
/// Whenever this function reads from `oldChildren`, this function first
/// checks whether the child is in `forgottenChildren`. If it is, the function
/// acts as if the child was not in `oldChildren`.
///
/// This function is a convenience wrapper around [updateChild], which updates
/// each individual child. When calling [updateChild], this function uses the
/// previous element as the `newSlot` argument.
@protected
List<Element> updateChildren(List<Element> oldChildren, List<Widget> newWidgets, { Set<Element> forgottenChildren }) {
assert(oldChildren != null);
assert(newWidgets != null);
Element replaceWithNullIfForgotten(Element child) {
return forgottenChildren != null && forgottenChildren.contains(child) ? null : child;
}
// This attempts to diff the new child list (newWidgets) with
// the old child list (oldChildren), and produce a new list of elements to
// be the new list of child elements of this element. The called of this
// method is expected to update this render object accordingly.
// The cases it tries to optimize for are:
// - the old list is empty
// - the lists are identical
// - there is an insertion or removal of one or more widgets in
// only one place in the list
// If a widget with a key is in both lists, it will be synced.
// Widgets without keys might be synced but there is no guarantee.
// The general approach is to sync the entire new list backwards, as follows:
// 1. Walk the lists from the top, syncing nodes, until you no longer have
// matching nodes.
// 2. Walk the lists from the bottom, without syncing nodes, until you no
// longer have matching nodes. We'll sync these nodes at the end. We
// don't sync them now because we want to sync all the nodes in order
// from beginning to end.
// At this point we narrowed the old and new lists to the point
// where the nodes no longer match.
// 3. Walk the narrowed part of the old list to get the list of
// keys and sync null with non-keyed items.
// 4. Walk the narrowed part of the new list forwards:
// * Sync non-keyed items with null
// * Sync keyed items with the source if it exists, else with null.
// 5. Walk the bottom of the list again, syncing the nodes.
// 6. Sync null with any items in the list of keys that are still
// mounted.
int newChildrenTop = 0;
int oldChildrenTop = 0;
int newChildrenBottom = newWidgets.length - 1;
int oldChildrenBottom = oldChildren.length - 1;
final List<Element> newChildren = oldChildren.length == newWidgets.length ?
oldChildren : List<Element>(newWidgets.length);
Element previousChild;
// Update the top of the list.
while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
final Element oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenTop]);
final Widget newWidget = newWidgets[newChildrenTop];
assert(oldChild == null || oldChild._debugLifecycleState == _ElementLifecycle.active);
if (oldChild == null || !Widget.canUpdate(oldChild.widget, newWidget))
break;
final Element newChild = updateChild(oldChild, newWidget, previousChild);
assert(newChild._debugLifecycleState == _ElementLifecycle.active);
newChildren[newChildrenTop] = newChild;
previousChild = newChild;
newChildrenTop += 1;
oldChildrenTop += 1;
}
// Scan the bottom of the list.
while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
final Element oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenBottom]);
final Widget newWidget = newWidgets[newChildrenBottom];
assert(oldChild == null || oldChild._debugLifecycleState == _ElementLifecycle.active);
if (oldChild == null || !Widget.canUpdate(oldChild.widget, newWidget))
break;
oldChildrenBottom -= 1;
newChildrenBottom -= 1;
}
// Scan the old children in the middle of the list.
final bool haveOldChildren = oldChildrenTop <= oldChildrenBottom;
Map<Key, Element> oldKeyedChildren;
if (haveOldChildren) {
oldKeyedChildren = <Key, Element>{};
while (oldChildrenTop <= oldChildrenBottom) {
final Element oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenTop]);
assert(oldChild == null || oldChild._debugLifecycleState == _ElementLifecycle.active);
if (oldChild != null) {
if (oldChild.widget.key != null)
oldKeyedChildren[oldChild.widget.key] = oldChild;
else
deactivateChild(oldChild);
}
oldChildrenTop += 1;
}
}
// Update the middle of the list.
while (newChildrenTop <= newChildrenBottom) {
Element oldChild;
final Widget newWidget = newWidgets[newChildrenTop];
if (haveOldChildren) {
final Key key = newWidget.key;
if (key != null) {
oldChild = oldKeyedChildren[key];
if (oldChild != null) {
if (Widget.canUpdate(oldChild.widget, newWidget)) {
// we found a match!
// remove it from oldKeyedChildren so we don't unsync it later
oldKeyedChildren.remove(key);
} else {
// Not a match, let's pretend we didn't see it for now.
oldChild = null;
}
}
}
}
assert(oldChild == null || Widget.canUpdate(oldChild.widget, newWidget));
final Element newChild = updateChild(oldChild, newWidget, previousChild);
assert(newChild._debugLifecycleState == _ElementLifecycle.active);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.active);
newChildren[newChildrenTop] = newChild;
previousChild = newChild;
newChildrenTop += 1;
}
// We've scanned the whole list.
assert(oldChildrenTop == oldChildrenBottom + 1);
assert(newChildrenTop == newChildrenBottom + 1);
assert(newWidgets.length - newChildrenTop == oldChildren.length - oldChildrenTop);
newChildrenBottom = newWidgets.length - 1;
oldChildrenBottom = oldChildren.length - 1;
// Update the bottom of the list.
while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
final Element oldChild = oldChildren[oldChildrenTop];
assert(replaceWithNullIfForgotten(oldChild) != null);
assert(oldChild._debugLifecycleState == _ElementLifecycle.active);
final Widget newWidget = newWidgets[newChildrenTop];
assert(Widget.canUpdate(oldChild.widget, newWidget));
final Element newChild = updateChild(oldChild, newWidget, previousChild);
assert(newChild._debugLifecycleState == _ElementLifecycle.active);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.active);
newChildren[newChildrenTop] = newChild;
previousChild = newChild;
newChildrenTop += 1;
oldChildrenTop += 1;
}
// Clean up any of the remaining middle nodes from the old list.
if (haveOldChildren && oldKeyedChildren.isNotEmpty) {
for (final Element oldChild in oldKeyedChildren.values) {
if (forgottenChildren == null || !forgottenChildren.contains(oldChild))
deactivateChild(oldChild);
}
}
return newChildren;
}
@override
void deactivate() {
super.deactivate();
assert(!renderObject.attached,
'A RenderObject was still attached when attempting to deactivate its '
'RenderObjectElement: $renderObject');
}
@override
void unmount() {
super.unmount();
assert(!renderObject.attached,
'A RenderObject was still attached when attempting to unmount its '
'RenderObjectElement: $renderObject');
widget.didUnmountRenderObject(renderObject);
}
void _updateParentData(ParentDataWidget<RenderObjectWidget> parentData) {
parentData.applyParentData(renderObject);
}
@override
void _updateSlot(dynamic newSlot) {
assert(slot != newSlot);
super._updateSlot(newSlot);
assert(slot == newSlot);
_ancestorRenderObjectElement.moveChildRenderObject(renderObject, slot);
}
@override
void attachRenderObject(dynamic newSlot) {
assert(_ancestorRenderObjectElement == null);
_slot = newSlot;
_ancestorRenderObjectElement = _findAncestorRenderObjectElement();
_ancestorRenderObjectElement?.insertChildRenderObject(renderObject, newSlot);
final ParentDataElement<RenderObjectWidget> parentDataElement = _findAncestorParentDataElement();
if (parentDataElement != null)
_updateParentData(parentDataElement.widget);
}
@override
void detachRenderObject() {
if (_ancestorRenderObjectElement != null) {
_ancestorRenderObjectElement.removeChildRenderObject(renderObject);
_ancestorRenderObjectElement = null;
}
_slot = null;
}
/// Insert the given child into [renderObject] at the given slot.
///
/// The semantics of `slot` are determined by this element. For example, if
/// this element has a single child, the slot should always be null. If this
/// element has a list of children, the previous sibling is a convenient value
/// for the slot.
@protected
void insertChildRenderObject(covariant RenderObject child, covariant dynamic slot);
/// Move the given child to the given slot.
///
/// The given child is guaranteed to have [renderObject] as its parent.
///
/// The semantics of `slot` are determined by this element. For example, if
/// this element has a single child, the slot should always be null. If this
/// element has a list of children, the previous sibling is a convenient value
/// for the slot.
///
/// This method is only ever called if [updateChild] can end up being called
/// with an existing [Element] child and a `slot` that differs from the slot
/// that element was previously given. [MultiChildRenderObjectElement] does this,
/// for example. [SingleChildRenderObjectElement] does not (since the `slot` is
/// always null). An [Element] that has a specific set of slots with each child
/// always having the same slot (and where children in different slots are never
/// compared against each other for the purposes of updating one slot with the
/// element from another slot) would never call this.
@protected
void moveChildRenderObject(covariant RenderObject child, covariant dynamic slot);
/// Remove the given child from [renderObject].
///
/// The given child is guaranteed to have [renderObject] as its parent.
@protected
void removeChildRenderObject(covariant RenderObject child);
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<RenderObject>('renderObject', renderObject, defaultValue: null));
}
}
/// The element at the root of the tree.
///
/// Only root elements may have their owner set explicitly. All other
/// elements inherit their owner from their parent.
abstract class RootRenderObjectElement extends RenderObjectElement {
/// Initializes fields for subclasses.
RootRenderObjectElement(RenderObjectWidget widget) : super(widget);
/// Set the owner of the element. The owner will be propagated to all the
/// descendants of this element.
///
/// The owner manages the dirty elements list.
///
/// The [WidgetsBinding] introduces the primary owner,
/// [WidgetsBinding.buildOwner], and assigns it to the widget tree in the call
/// to [runApp]. The binding is responsible for driving the build pipeline by
/// calling the build owner's [BuildOwner.buildScope] method. See
/// [WidgetsBinding.drawFrame].
void assignOwner(BuildOwner owner) {
_owner = owner;
}
@override
void mount(Element parent, dynamic newSlot) {
// Root elements should never have parents.
assert(parent == null);
assert(newSlot == null);
super.mount(parent, newSlot);
}
}
/// An [Element] that uses a [LeafRenderObjectWidget] as its configuration.
class LeafRenderObjectElement extends RenderObjectElement {
/// Creates an element that uses the given widget as its configuration.
LeafRenderObjectElement(LeafRenderObjectWidget widget) : super(widget);
@override
void forgetChild(Element child) {
assert(false);
}
@override
void insertChildRenderObject(RenderObject child, dynamic slot) {
assert(false);
}
@override
void moveChildRenderObject(RenderObject child, dynamic slot) {
assert(false);
}
@override
void removeChildRenderObject(RenderObject child) {
assert(false);
}
@override
List<DiagnosticsNode> debugDescribeChildren() {
return widget.debugDescribeChildren();
}
}
/// An [Element] that uses a [SingleChildRenderObjectWidget] as its configuration.
///
/// The child is optional.
///
/// This element subclass can be used for RenderObjectWidgets whose
/// RenderObjects use the [RenderObjectWithChildMixin] mixin. Such widgets are
/// expected to inherit from [SingleChildRenderObjectWidget].
class SingleChildRenderObjectElement extends RenderObjectElement {
/// Creates an element that uses the given widget as its configuration.
SingleChildRenderObjectElement(SingleChildRenderObjectWidget widget) : super(widget);
@override
SingleChildRenderObjectWidget get widget => super.widget as SingleChildRenderObjectWidget;
Element _child;
@override
void visitChildren(ElementVisitor visitor) {
if (_child != null)
visitor(_child);
}
@override
void forgetChild(Element child) {
assert(child == _child);
_child = null;
}
@override
void mount(Element parent, dynamic newSlot) {
super.mount(parent, newSlot);
_child = updateChild(_child, widget.child, null);
}
@override
void update(SingleChildRenderObjectWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
_child = updateChild(_child, widget.child, null);
}
@override
void insertChildRenderObject(RenderObject child, dynamic slot) {
final RenderObjectWithChildMixin<RenderObject> renderObject = this.renderObject as RenderObjectWithChildMixin<RenderObject>;
assert(slot == null);
assert(renderObject.debugValidateChild(child));
renderObject.child = child;
assert(renderObject == this.renderObject);
}
@override
void moveChildRenderObject(RenderObject child, dynamic slot) {
assert(false);
}
@override
void removeChildRenderObject(RenderObject child) {
final RenderObjectWithChildMixin<RenderObject> renderObject = this.renderObject as RenderObjectWithChildMixin<RenderObject>;
assert(renderObject.child == child);
renderObject.child = null;
assert(renderObject == this.renderObject);
}
}
/// An [Element] that uses a [MultiChildRenderObjectWidget] as its configuration.
///
/// This element subclass can be used for RenderObjectWidgets whose
/// RenderObjects use the [ContainerRenderObjectMixin] mixin with a parent data
/// type that implements [ContainerParentDataMixin<RenderObject>]. Such widgets
/// are expected to inherit from [MultiChildRenderObjectWidget].
class MultiChildRenderObjectElement extends RenderObjectElement {
/// Creates an element that uses the given widget as its configuration.
MultiChildRenderObjectElement(MultiChildRenderObjectWidget widget)
: assert(!debugChildrenHaveDuplicateKeys(widget, widget.children)),
super(widget);
@override
MultiChildRenderObjectWidget get widget => super.widget as MultiChildRenderObjectWidget;
/// The current list of children of this element.
///
/// This list is filtered to hide elements that have been forgotten (using
/// [forgetChild]).
@protected
@visibleForTesting
Iterable<Element> get children => _children.where((Element child) => !_forgottenChildren.contains(child));
List<Element> _children;
// We keep a set of forgotten children to avoid O(n^2) work walking _children
// repeatedly to remove children.
final Set<Element> _forgottenChildren = HashSet<Element>();
@override
void insertChildRenderObject(RenderObject child, Element slot) {
final ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>> renderObject =
this.renderObject as ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>>;
assert(renderObject.debugValidateChild(child));
renderObject.insert(child, after: slot?.renderObject);
assert(renderObject == this.renderObject);
}
@override
void moveChildRenderObject(RenderObject child, Element slot) {
final ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>> renderObject =
this.renderObject as ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>>;
assert(child.parent == renderObject);
renderObject.move(child, after: slot?.renderObject);
assert(renderObject == this.renderObject);
}
@override
void removeChildRenderObject(RenderObject child) {
final ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>> renderObject =
this.renderObject as ContainerRenderObjectMixin<RenderObject, ContainerParentDataMixin<RenderObject>>;
assert(child.parent == renderObject);
renderObject.remove(child);
assert(renderObject == this.renderObject);
}
@override
void visitChildren(ElementVisitor visitor) {
for (final Element child in _children) {
if (!_forgottenChildren.contains(child))
visitor(child);
}
}
@override
void forgetChild(Element child) {
assert(_children.contains(child));
assert(!_forgottenChildren.contains(child));
_forgottenChildren.add(child);
}
@override
void mount(Element parent, dynamic newSlot) {
super.mount(parent, newSlot);
_children = List<Element>(widget.children.length);
Element previousChild;
for (int i = 0; i < _children.length; i += 1) {
final Element newChild = inflateWidget(widget.children[i], previousChild);
_children[i] = newChild;
previousChild = newChild;
}
}
@override
void update(MultiChildRenderObjectWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
_children = updateChildren(_children, widget.children, forgottenChildren: _forgottenChildren);
_forgottenChildren.clear();
}
}
/// A wrapper class for the [Element] that is the creator of a [RenderObject].
///
/// Attaching a [DebugCreator] attach the [RenderObject] will lead to better error
/// message.
class DebugCreator {
/// Create a [DebugCreator] instance with input [Element].
DebugCreator(this.element);
/// The creator of the [RenderObject].
final Element element;
@override
String toString() => element.debugGetCreatorChain(12);
}
FlutterErrorDetails _debugReportException(
DiagnosticsNode context,
dynamic exception,
StackTrace stack, {
InformationCollector informationCollector,
}) {
final FlutterErrorDetails details = FlutterErrorDetails(
exception: exception,
stack: stack,
library: 'widgets library',
context: context,
informationCollector: informationCollector,
);
FlutterError.reportError(details);
return details;
}