async.dart 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

/// Widgets that handle interaction with asynchronous computations.
///
/// Asynchronous computations are represented by [Future]s and [Stream]s.

import 'dart:async' show Future, Stream, StreamSubscription;

import 'framework.dart';

// Examples can assume:
// dynamic _lot;
// Future<String> _calculation;

/// Base class for widgets that build themselves based on interaction with
/// a specified [Stream].
///
/// A [StreamBuilderBase] is stateful and maintains a summary of the interaction
/// so far. The type of the summary and how it is updated with each interaction
/// is defined by sub-classes.
///
/// Examples of summaries include:
///
/// * the running average of a stream of integers;
/// * the current direction and speed based on a stream of geolocation data;
/// * a graph displaying data points from a stream.
///
/// In general, the summary is the result of a fold computation over the data
/// items and errors received from the stream along with pseudo-events
/// representing termination or change of stream. The initial summary is
/// specified by sub-classes by overriding [initial]. The summary updates on
/// receipt of stream data and errors are specified by overriding [afterData] and
/// [afterError], respectively. If needed, the summary may be updated on stream
/// termination by overriding [afterDone]. Finally, the summary may be updated
/// on change of stream by overriding [afterDisconnected] and [afterConnected].
///
/// `T` is the type of stream events.
///
/// `S` is the type of interaction summary.
///
/// See also:
///
///  * [StreamBuilder], which is specialized for the case where only the most
///    recent interaction is needed for widget building.
abstract class StreamBuilderBase<T, S> extends StatefulWidget {
  /// Creates a [StreamBuilderBase] connected to the specified [stream].
  const StreamBuilderBase({ Key key, this.stream }) : super(key: key);

  /// The asynchronous computation to which this builder is currently connected,
  /// possibly null. When changed, the current summary is updated using
  /// [afterDisconnected], if the previous stream was not null, followed by
  /// [afterConnected], if the new stream is not null.
  final Stream<T> stream;

  /// Returns the initial summary of stream interaction, typically representing
  /// the fact that no interaction has happened at all.
  ///
  /// Sub-classes must override this method to provide the initial value for
  /// the fold computation.
  S initial();

  /// Returns an updated version of the [current] summary reflecting that we
  /// are now connected to a stream.
  ///
  /// The default implementation returns [current] as is.
  S afterConnected(S current) => current;

  /// Returns an updated version of the [current] summary following a data event.
  ///
  /// Sub-classes must override this method to specify how the current summary
  /// is combined with the new data item in the fold computation.
  S afterData(S current, T data);

  /// Returns an updated version of the [current] summary following an error.
  ///
  /// The default implementation returns [current] as is.
  S afterError(S current, Object error) => current;

  /// Returns an updated version of the [current] summary following stream
  /// termination.
  ///
  /// The default implementation returns [current] as is.
  S afterDone(S current) => current;

  /// Returns an updated version of the [current] summary reflecting that we
  /// are no longer connected to a stream.
  ///
  /// The default implementation returns [current] as is.
  S afterDisconnected(S current) => current;

  /// Returns a Widget based on the [currentSummary].
  Widget build(BuildContext context, S currentSummary);

  @override
  State<StreamBuilderBase<T, S>> createState() => _StreamBuilderBaseState<T, S>();
}

/// State for [StreamBuilderBase].
class _StreamBuilderBaseState<T, S> extends State<StreamBuilderBase<T, S>> {
  StreamSubscription<T> _subscription;
  S _summary;

  @override
  void initState() {
    super.initState();
    _summary = widget.initial();
    _subscribe();
  }

  @override
  void didUpdateWidget(StreamBuilderBase<T, S> oldWidget) {
    super.didUpdateWidget(oldWidget);
    if (oldWidget.stream != widget.stream) {
      if (_subscription != null) {
        _unsubscribe();
        _summary = widget.afterDisconnected(_summary);
      }
      _subscribe();
    }
  }

  @override
  Widget build(BuildContext context) => widget.build(context, _summary);

  @override
  void dispose() {
    _unsubscribe();
    super.dispose();
  }

  void _subscribe() {
    if (widget.stream != null) {
      _subscription = widget.stream.listen((T data) {
        setState(() {
          _summary = widget.afterData(_summary, data);
        });
      }, onError: (Object error) {
        setState(() {
          _summary = widget.afterError(_summary, error);
        });
      }, onDone: () {
        setState(() {
          _summary = widget.afterDone(_summary);
        });
      });
      _summary = widget.afterConnected(_summary);
    }
  }

  void _unsubscribe() {
    if (_subscription != null) {
      _subscription.cancel();
      _subscription = null;
    }
  }
}

/// The state of connection to an asynchronous computation.
///
/// See also:
///
///  * [AsyncSnapshot], which augments a connection state with information
///    received from the asynchronous computation.
enum ConnectionState {
  /// Not currently connected to any asynchronous computation.
  ///
  /// For example, a [FutureBuilder] whose [FutureBuilder.future] is null.
  none,

  /// Connected to an asynchronous computation and awaiting interaction.
  waiting,

  /// Connected to an active asynchronous computation.
  ///
  /// For example, a [Stream] that has returned at least one value, but is not
  /// yet done.
  active,

  /// Connected to a terminated asynchronous computation.
  done,
}

/// Immutable representation of the most recent interaction with an asynchronous
/// computation.
///
/// See also:
///
///  * [StreamBuilder], which builds itself based on a snapshot from interacting
///    with a [Stream].
///  * [FutureBuilder], which builds itself based on a snapshot from interacting
///    with a [Future].
@immutable
class AsyncSnapshot<T> {
  /// Creates an [AsyncSnapshot] with the specified [connectionState],
  /// and optionally either [data] or [error] (but not both).
  const AsyncSnapshot._(this.connectionState, this.data, this.error)
    : assert(connectionState != null),
      assert(!(data != null && error != null));

  /// Creates an [AsyncSnapshot] in [ConnectionState.none] with null data and error.
  const AsyncSnapshot.nothing() : this._(ConnectionState.none, null, null);

  /// Creates an [AsyncSnapshot] in the specified [state] and with the specified [data].
  const AsyncSnapshot.withData(ConnectionState state, T data) : this._(state, data, null);

  /// Creates an [AsyncSnapshot] in the specified [state] and with the specified [error].
  const AsyncSnapshot.withError(ConnectionState state, Object error) : this._(state, null, error);

  /// Current state of connection to the asynchronous computation.
  final ConnectionState connectionState;

  /// The latest data received by the asynchronous computation.
  ///
  /// If this is non-null, [hasData] will be true.
  ///
  /// If [error] is not null, this will be null. See [hasError].
  ///
  /// If the asynchronous computation has never returned a value, this may be
  /// set to an initial data value specified by the relevant widget. See
  /// [FutureBuilder.initialData] and [StreamBuilder.initialData].
  final T data;

  /// Returns latest data received, failing if there is no data.
  ///
  /// Throws [error], if [hasError]. Throws [StateError], if neither [hasData]
  /// nor [hasError].
  T get requireData {
    if (hasData)
      return data;
    if (hasError)
      throw error;
    throw StateError('Snapshot has neither data nor error');
  }

  /// The latest error object received by the asynchronous computation.
  ///
  /// If this is non-null, [hasError] will be true.
  ///
  /// If [data] is not null, this will be null.
  final Object error;

  /// Returns a snapshot like this one, but in the specified [state].
  ///
  /// The [data] and [error] fields persist unmodified, even if the new state is
  /// [ConnectionState.none].
  AsyncSnapshot<T> inState(ConnectionState state) => AsyncSnapshot<T>._(state, data, error);

  /// Returns whether this snapshot contains a non-null [data] value.
  ///
  /// This can be false even when the asynchronous computation has completed
  /// successfully, if the computation did not return a non-null value. For
  /// example, a [Future<void>] will complete with the null value even if it
  /// completes successfully.
  bool get hasData => data != null;

  /// Returns whether this snapshot contains a non-null [error] value.
  ///
  /// This is always true if the asynchronous computation's last result was
  /// failure.
  bool get hasError => error != null;

  @override
  String toString() => '$runtimeType($connectionState, $data, $error)';

  @override
  bool operator ==(dynamic other) {
    if (identical(this, other))
      return true;
    if (other is! AsyncSnapshot<T>)
      return false;
    final AsyncSnapshot<T> typedOther = other;
    return connectionState == typedOther.connectionState
        && data == typedOther.data
        && error == typedOther.error;
  }

  @override
  int get hashCode => hashValues(connectionState, data, error);
}

/// Signature for strategies that build widgets based on asynchronous
/// interaction.
///
/// See also:
///
///  * [StreamBuilder], which delegates to an [AsyncWidgetBuilder] to build
///    itself based on a snapshot from interacting with a [Stream].
///  * [FutureBuilder], which delegates to an [AsyncWidgetBuilder] to build
///    itself based on a snapshot from interacting with a [Future].
typedef AsyncWidgetBuilder<T> = Widget Function(BuildContext context, AsyncSnapshot<T> snapshot);

/// Widget that builds itself based on the latest snapshot of interaction with
/// a [Stream].
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=MkKEWHfy99Y}
///
/// Widget rebuilding is scheduled by each interaction, using [State.setState],
/// but is otherwise decoupled from the timing of the stream. The [builder]
/// is called at the discretion of the Flutter pipeline, and will thus receive a
/// timing-dependent sub-sequence of the snapshots that represent the
/// interaction with the stream.
///
/// As an example, when interacting with a stream producing the integers
/// 0 through 9, the [builder] may be called with any ordered sub-sequence
/// of the following snapshots that includes the last one (the one with
/// ConnectionState.done):
///
/// * `new AsyncSnapshot<int>.withData(ConnectionState.waiting, null)`
/// * `new AsyncSnapshot<int>.withData(ConnectionState.active, 0)`
/// * `new AsyncSnapshot<int>.withData(ConnectionState.active, 1)`
/// * ...
/// * `new AsyncSnapshot<int>.withData(ConnectionState.active, 9)`
/// * `new AsyncSnapshot<int>.withData(ConnectionState.done, 9)`
///
/// The actual sequence of invocations of the [builder] depends on the relative
/// timing of events produced by the stream and the build rate of the Flutter
/// pipeline.
///
/// Changing the [StreamBuilder] configuration to another stream during event
/// generation introduces snapshot pairs of the form:
///
/// * `new AsyncSnapshot<int>.withData(ConnectionState.none, 5)`
/// * `new AsyncSnapshot<int>.withData(ConnectionState.waiting, 5)`
///
/// The latter will be produced only when the new stream is non-null, and the
/// former only when the old stream is non-null.
///
/// The stream may produce errors, resulting in snapshots of the form:
///
/// * `new AsyncSnapshot<int>.withError(ConnectionState.active, 'some error')`
///
/// The data and error fields of snapshots produced are only changed when the
/// state is `ConnectionState.active`.
///
/// The initial snapshot data can be controlled by specifying [initialData].
/// This should be used to ensure that the first frame has the expected value,
/// as the builder will always be called before the stream listener has a chance
/// to be processed.
///
/// {@tool sample}
///
/// This sample shows a [StreamBuilder] configuring a text label to show the
/// latest bid received for a lot in an auction. Assume the `_lot` field is
/// set by a selector elsewhere in the UI.
///
/// ```dart
/// StreamBuilder<int>(
///   stream: _lot?.bids, // a Stream<int> or null
///   builder: (BuildContext context, AsyncSnapshot<int> snapshot) {
///     if (snapshot.hasError)
///       return Text('Error: ${snapshot.error}');
///     switch (snapshot.connectionState) {
///       case ConnectionState.none: return Text('Select lot');
///       case ConnectionState.waiting: return Text('Awaiting bids...');
///       case ConnectionState.active: return Text('\$${snapshot.data}');
///       case ConnectionState.done: return Text('\$${snapshot.data} (closed)');
///     }
///     return null; // unreachable
///   },
/// )
/// ```
/// {@end-tool}
///
/// See also:
///
///  * [ValueListenableBuilder], which wraps a [ValueListenable] instead of a
///    [Stream].
///  * [StreamBuilderBase], which supports widget building based on a computation
///    that spans all interactions made with the stream.
// TODO(ianh): remove unreachable code above once https://github.com/dart-lang/linter/issues/1139 is fixed
class StreamBuilder<T> extends StreamBuilderBase<T, AsyncSnapshot<T>> {
  /// Creates a new [StreamBuilder] that builds itself based on the latest
  /// snapshot of interaction with the specified [stream] and whose build
  /// strategy is given by [builder].
  ///
  /// The [initialData] is used to create the initial snapshot.
  ///
  /// The [builder] must not be null.
  const StreamBuilder({
    Key key,
    this.initialData,
    Stream<T> stream,
    @required this.builder,
  }) : assert(builder != null),
       super(key: key, stream: stream);

  /// The build strategy currently used by this builder.
  final AsyncWidgetBuilder<T> builder;

  /// The data that will be used to create the initial snapshot.
  ///
  /// Providing this value (presumably obtained synchronously somehow when the
  /// [Stream] was created) ensures that the first frame will show useful data.
  /// Otherwise, the first frame will be built with the value null, regardless
  /// of whether a value is available on the stream: since streams are
  /// asynchronous, no events from the stream can be obtained before the initial
  /// build.
  final T initialData;

  @override
  AsyncSnapshot<T> initial() => AsyncSnapshot<T>.withData(ConnectionState.none, initialData);

  @override
  AsyncSnapshot<T> afterConnected(AsyncSnapshot<T> current) => current.inState(ConnectionState.waiting);

  @override
  AsyncSnapshot<T> afterData(AsyncSnapshot<T> current, T data) {
    return AsyncSnapshot<T>.withData(ConnectionState.active, data);
  }

  @override
  AsyncSnapshot<T> afterError(AsyncSnapshot<T> current, Object error) {
    return AsyncSnapshot<T>.withError(ConnectionState.active, error);
  }

  @override
  AsyncSnapshot<T> afterDone(AsyncSnapshot<T> current) => current.inState(ConnectionState.done);

  @override
  AsyncSnapshot<T> afterDisconnected(AsyncSnapshot<T> current) => current.inState(ConnectionState.none);

  @override
  Widget build(BuildContext context, AsyncSnapshot<T> currentSummary) => builder(context, currentSummary);
}

/// Widget that builds itself based on the latest snapshot of interaction with
/// a [Future].
///
/// The [future] must have been obtained earlier, e.g. during [State.initState],
/// [State.didUpdateConfig], or [State.didChangeDependencies]. It must not be
/// created during the [State.build] or [StatelessWidget.build] method call when
/// constructing the [FutureBuilder]. If the [future] is created at the same
/// time as the [FutureBuilder], then every time the [FutureBuilder]'s parent is
/// rebuilt, the asynchronous task will be restarted.
///
/// A general guideline is to assume that every `build` method could get called
/// every frame, and to treat omitted calls as an optimization.
///
/// {@youtube 560 315 https://www.youtube.com/watch?v=ek8ZPdWj4Qo}
///
/// ## Timing
///
/// Widget rebuilding is scheduled by the completion of the future, using
/// [State.setState], but is otherwise decoupled from the timing of the future.
/// The [builder] callback is called at the discretion of the Flutter pipeline, and
/// will thus receive a timing-dependent sub-sequence of the snapshots that
/// represent the interaction with the future.
///
/// A side-effect of this is that providing a new but already-completed future
/// to a [FutureBuilder] will result in a single frame in the
/// [ConnectionState.waiting] state. This is because there is no way to
/// synchronously determine that a [Future] has already completed.
///
/// ## Builder contract
///
/// For a future that completes successfully with data, assuming [initialData]
/// is null, the [builder] will be called with either both or only the latter of
/// the following snapshots:
///
/// * `new AsyncSnapshot<String>.withData(ConnectionState.waiting, null)`
/// * `new AsyncSnapshot<String>.withData(ConnectionState.done, 'some data')`
///
/// If that same future instead completed with an error, the [builder] would be
/// called with either both or only the latter of:
///
/// * `new AsyncSnapshot<String>.withData(ConnectionState.waiting, null)`
/// * `new AsyncSnapshot<String>.withError(ConnectionState.done, 'some error')`
///
/// The initial snapshot data can be controlled by specifying [initialData]. You
/// would use this facility to ensure that if the [builder] is invoked before
/// the future completes, the snapshot carries data of your choice rather than
/// the default null value.
///
/// The data and error fields of the snapshot change only as the connection
/// state field transitions from `waiting` to `done`, and they will be retained
/// when changing the [FutureBuilder] configuration to another future. If the
/// old future has already completed successfully with data as above, changing
/// configuration to a new future results in snapshot pairs of the form:
///
/// * `new AsyncSnapshot<String>.withData(ConnectionState.none, 'data of first future')`
/// * `new AsyncSnapshot<String>.withData(ConnectionState.waiting, 'data of second future')`
///
/// In general, the latter will be produced only when the new future is
/// non-null, and the former only when the old future is non-null.
///
/// A [FutureBuilder] behaves identically to a [StreamBuilder] configured with
/// `future?.asStream()`, except that snapshots with `ConnectionState.active`
/// may appear for the latter, depending on how the stream is implemented.
///
/// {@tool sample}
///
/// This sample shows a [FutureBuilder] configuring a text label to show the
/// state of an asynchronous calculation returning a string. Assume the
/// `_calculation` field is set by pressing a button elsewhere in the UI.
///
/// ```dart
/// FutureBuilder<String>(
///   future: _calculation, // a previously-obtained Future<String> or null
///   builder: (BuildContext context, AsyncSnapshot<String> snapshot) {
///     switch (snapshot.connectionState) {
///       case ConnectionState.none:
///         return Text('Press button to start.');
///       case ConnectionState.active:
///       case ConnectionState.waiting:
///         return Text('Awaiting result...');
///       case ConnectionState.done:
///         if (snapshot.hasError)
///           return Text('Error: ${snapshot.error}');
///         return Text('Result: ${snapshot.data}');
///     }
///     return null; // unreachable
///   },
/// )
/// ```
/// {@end-tool}
// TODO(ianh): remove unreachable code above once https://github.com/dart-lang/linter/issues/1141 is fixed
class FutureBuilder<T> extends StatefulWidget {
  /// Creates a widget that builds itself based on the latest snapshot of
  /// interaction with a [Future].
  ///
  /// The [builder] must not be null.
  const FutureBuilder({
    Key key,
    this.future,
    this.initialData,
    @required this.builder,
  }) : assert(builder != null),
       super(key: key);

  /// The asynchronous computation to which this builder is currently connected,
  /// possibly null.
  ///
  /// If no future has yet completed, including in the case where [future] is
  /// null, the data provided to the [builder] will be set to [initialData].
  final Future<T> future;

  /// The build strategy currently used by this builder.
  ///
  /// The builder is provided with an [AsyncSnapshot] object whose
  /// [AsyncSnapshot.connectionState] property will be one of the following
  /// values:
  ///
  ///  * [ConnectionState.none]: [future] is null. The [AsyncSnapshot.data] will
  ///    be set to [initialData], unless a future has previously completed, in
  ///    which case the previous result persists.
  ///
  ///  * [ConnectionState.waiting]: [future] is not null, but has not yet
  ///    completed. The [AsyncSnapshot.data] will be set to [initialData],
  ///    unless a future has previously completed, in which case the previous
  ///    result persists.
  ///
  ///  * [ConnectionState.done]: [future] is not null, and has completed. If the
  ///    future completed successfully, the [AsyncSnapshot.data] will be set to
  ///    the value to which the future completed. If it completed with an error,
  ///    [AsyncSnapshot.hasError] will be true and [AsyncSnapshot.error] will be
  ///    set to the error object.
  final AsyncWidgetBuilder<T> builder;

  /// The data that will be used to create the snapshots provided until a
  /// non-null [future] has completed.
  ///
  /// If the future completes with an error, the data in the [AsyncSnapshot]
  /// provided to the [builder] will become null, regardless of [initialData].
  /// (The error itself will be available in [AsyncSnapshot.error], and
  /// [AsyncSnapshot.hasError] will be true.)
  final T initialData;

  @override
  State<FutureBuilder<T>> createState() => _FutureBuilderState<T>();
}

/// State for [FutureBuilder].
class _FutureBuilderState<T> extends State<FutureBuilder<T>> {
  /// An object that identifies the currently active callbacks. Used to avoid
  /// calling setState from stale callbacks, e.g. after disposal of this state,
  /// or after widget reconfiguration to a new Future.
  Object _activeCallbackIdentity;
  AsyncSnapshot<T> _snapshot;

  @override
  void initState() {
    super.initState();
    _snapshot = AsyncSnapshot<T>.withData(ConnectionState.none, widget.initialData);
    _subscribe();
  }

  @override
  void didUpdateWidget(FutureBuilder<T> oldWidget) {
    super.didUpdateWidget(oldWidget);
    if (oldWidget.future != widget.future) {
      if (_activeCallbackIdentity != null) {
        _unsubscribe();
        _snapshot = _snapshot.inState(ConnectionState.none);
      }
      _subscribe();
    }
  }

  @override
  Widget build(BuildContext context) => widget.builder(context, _snapshot);

  @override
  void dispose() {
    _unsubscribe();
    super.dispose();
  }

  void _subscribe() {
    if (widget.future != null) {
      final Object callbackIdentity = Object();
      _activeCallbackIdentity = callbackIdentity;
      widget.future.then<void>((T data) {
        if (_activeCallbackIdentity == callbackIdentity) {
          setState(() {
            _snapshot = AsyncSnapshot<T>.withData(ConnectionState.done, data);
          });
        }
      }, onError: (Object error) {
        if (_activeCallbackIdentity == callbackIdentity) {
          setState(() {
            _snapshot = AsyncSnapshot<T>.withError(ConnectionState.done, error);
          });
        }
      });
      _snapshot = _snapshot.inState(ConnectionState.waiting);
    }
  }

  void _unsubscribe() {
    _activeCallbackIdentity = null;
  }
}