table.dart 43.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

import 'dart:collection';
import 'dart:math' as math;

import 'package:flutter/foundation.dart';

import 'box.dart';
import 'object.dart';
import 'table_border.dart';

/// Parent data used by [RenderTable] for its children.
class TableCellParentData extends BoxParentData {
  /// Where this cell should be placed vertically.
  TableCellVerticalAlignment verticalAlignment;

  /// The column that the child was in the last time it was laid out.
  int x;

  /// The row that the child was in the last time it was laid out.
  int y;

  @override
  String toString() => '${super.toString()}; ${verticalAlignment == null ? "default vertical alignment" : "$verticalAlignment"}';
}

/// Base class to describe how wide a column in a [RenderTable] should be.
///
/// To size a column to a specific number of pixels, use a [FixedColumnWidth].
/// This is the cheapest way to size a column.
///
/// Other algorithms that are relatively cheap include [FlexColumnWidth], which
/// distributes the space equally among the flexible columns,
/// [FractionColumnWidth], which sizes a column based on the size of the
/// table's container.
@immutable
abstract class TableColumnWidth {
  /// Abstract const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const TableColumnWidth();

  /// The smallest width that the column can have.
  ///
  /// The `cells` argument is an iterable that provides all the cells
  /// in the table for this column. Walking the cells is by definition
  /// O(N), so algorithms that do that should be considered expensive.
  ///
  /// The `containerWidth` argument is the `maxWidth` of the incoming
  /// constraints for the table, and might be infinite.
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);

  /// The ideal width that the column should have. This must be equal
  /// to or greater than the [minIntrinsicWidth]. The column might be
  /// bigger than this width, e.g. if the column is flexible or if the
  /// table's width ends up being forced to be bigger than the sum of
  /// all the maxIntrinsicWidth values.
  ///
  /// The `cells` argument is an iterable that provides all the cells
  /// in the table for this column. Walking the cells is by definition
  /// O(N), so algorithms that do that should be considered expensive.
  ///
  /// The `containerWidth` argument is the `maxWidth` of the incoming
  /// constraints for the table, and might be infinite.
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);

  /// The flex factor to apply to the cell if there is any room left
  /// over when laying out the table. The remaining space is
  /// distributed to any columns with flex in proportion to their flex
  /// value (higher values get more space).
  ///
  /// The `cells` argument is an iterable that provides all the cells
  /// in the table for this column. Walking the cells is by definition
  /// O(N), so algorithms that do that should be considered expensive.
  double flex(Iterable<RenderBox> cells) => null;

  @override
  String toString() => '$runtimeType';
}

/// Sizes the column according to the intrinsic dimensions of all the
/// cells in that column.
///
/// This is a very expensive way to size a column.
///
/// A flex value can be provided. If specified (and non-null), the
/// column will participate in the distribution of remaining space
/// once all the non-flexible columns have been sized.
class IntrinsicColumnWidth extends TableColumnWidth {
  /// Creates a column width based on intrinsic sizing.
  ///
  /// This sizing algorithm is very expensive.
  const IntrinsicColumnWidth({ double flex }) : _flex = flex;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    double result = 0.0;
    for (RenderBox cell in cells)
      result = math.max(result, cell.getMinIntrinsicWidth(double.infinity));
    return result;
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    double result = 0.0;
    for (RenderBox cell in cells)
      result = math.max(result, cell.getMaxIntrinsicWidth(double.infinity));
    return result;
  }

  final double _flex;

  @override
  double flex(Iterable<RenderBox> cells) => _flex;

  @override
  String toString() => '$runtimeType(flex: ${_flex?.toStringAsFixed(1)})';
}

/// Sizes the column to a specific number of pixels.
///
/// This is the cheapest way to size a column.
class FixedColumnWidth extends TableColumnWidth {
  /// Creates a column width based on a fixed number of logical pixels.
  ///
  /// The [value] argument must not be null.
  const FixedColumnWidth(this.value) : assert(value != null);

  /// The width the column should occupy in logical pixels.
  final double value;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return value;
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return value;
  }

  @override
  String toString() => '$runtimeType($value)';
}

/// Sizes the column to a fraction of the table's constraints' maxWidth.
///
/// This is a cheap way to size a column.
class FractionColumnWidth extends TableColumnWidth {
  /// Creates a column width based on a fraction of the table's constraints'
  /// maxWidth.
  ///
  /// The [value] argument must not be null.
  const FractionColumnWidth(this.value) : assert(value != null);

  /// The fraction of the table's constraints' maxWidth that this column should
  /// occupy.
  final double value;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    if (!containerWidth.isFinite)
      return 0.0;
    return value * containerWidth;
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    if (!containerWidth.isFinite)
      return 0.0;
    return value * containerWidth;
  }

  @override
  String toString() => '$runtimeType($value)';
}

/// Sizes the column by taking a part of the remaining space once all
/// the other columns have been laid out.
///
/// For example, if two columns have a [FlexColumnWidth], then half the
/// space will go to one and half the space will go to the other.
///
/// This is a cheap way to size a column.
class FlexColumnWidth extends TableColumnWidth {
  /// Creates a column width based on a fraction of the remaining space once all
  /// the other columns have been laid out.
  ///
  /// The [value] argument must not be null.
  const FlexColumnWidth([this.value = 1.0]) : assert(value != null);

  /// The reaction of the of the remaining space once all the other columns have
  /// been laid out that this column should occupy.
  final double value;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return 0.0;
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return 0.0;
  }

  @override
  double flex(Iterable<RenderBox> cells) {
    return value;
  }

  @override
  String toString() => '$runtimeType($value)';
}

/// Sizes the column such that it is the size that is the maximum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width or
/// 100px, whichever is bigger, you could use:
///
///     const MaxColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MaxColumnWidth extends TableColumnWidth {
  /// Creates a column width that is the maximum of two other column widths.
  const MaxColumnWidth(this.a, this.b);

  /// A lower bound for the width of this column.
  final TableColumnWidth a;

  /// Another lower bound for the width of this column.
  final TableColumnWidth b;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return math.max(
      a.minIntrinsicWidth(cells, containerWidth),
      b.minIntrinsicWidth(cells, containerWidth)
    );
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return math.max(
      a.maxIntrinsicWidth(cells, containerWidth),
      b.maxIntrinsicWidth(cells, containerWidth)
    );
  }

  @override
  double flex(Iterable<RenderBox> cells) {
    final double aFlex = a.flex(cells);
    if (aFlex == null)
      return b.flex(cells);
    final double bFlex = b.flex(cells);
    if (bFlex == null)
      return null;
    return math.max(aFlex, bFlex);
  }

  @override
  String toString() => '$runtimeType($a, $b)';
}

/// Sizes the column such that it is the size that is the minimum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width but
/// never bigger than 100px, you could use:
///
///     const MinColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MinColumnWidth extends TableColumnWidth {
  /// Creates a column width that is the minimum of two other column widths.
  const MinColumnWidth(this.a, this.b);

  /// An upper bound for the width of this column.
  final TableColumnWidth a;

  /// Another upper bound for the width of this column.
  final TableColumnWidth b;

  @override
  double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return math.min(
      a.minIntrinsicWidth(cells, containerWidth),
      b.minIntrinsicWidth(cells, containerWidth)
    );
  }

  @override
  double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
    return math.min(
      a.maxIntrinsicWidth(cells, containerWidth),
      b.maxIntrinsicWidth(cells, containerWidth)
    );
  }

  @override
  double flex(Iterable<RenderBox> cells) {
    final double aFlex = a.flex(cells);
    if (aFlex == null)
      return b.flex(cells);
    final double bFlex = b.flex(cells);
    if (bFlex == null)
      return null;
    return math.min(aFlex, bFlex);
  }

  @override
  String toString() => '$runtimeType($a, $b)';
}

/// Vertical alignment options for cells in [RenderTable] objects.
///
/// This is specified using [TableCellParentData] objects on the
/// [RenderObject.parentData] of the children of the [RenderTable].
enum TableCellVerticalAlignment {
  /// Cells with this alignment are placed with their top at the top of the row.
  top,

  /// Cells with this alignment are vertically centered in the row.
  middle,

  /// Cells with this alignment are placed with their bottom at the bottom of the row.
  bottom,

  /// Cells with this alignment are aligned such that they all share the same
  /// baseline. Cells with no baseline are top-aligned instead. The baseline
  /// used is specified by [RenderTable.textBaseline]. It is not valid to use
  /// the baseline value if [RenderTable.textBaseline] is not specified.
  ///
  /// This vertical alignment is relatively expensive because it causes the table
  /// to compute the baseline for each cell in the row.
  baseline,

  /// Cells with this alignment are sized to be as tall as the row, then made to fit the row.
  /// If all the cells have this alignment, then the row will have zero height.
  fill
}

/// A table where the columns and rows are sized to fit the contents of the cells.
class RenderTable extends RenderBox {
  /// Creates a table render object.
  ///
  ///  * `columns` must either be null or non-negative. If `columns` is null,
  ///    the number of columns will be inferred from length of the first sublist
  ///    of `children`.
  ///  * `rows` must either be null or non-negative. If `rows` is null, the
  ///    number of rows will be inferred from the `children`. If `rows` is not
  ///    null, then `children` must be null.
  ///  * `children` must either be null or contain lists of all the same length.
  ///    if `children` is not null, then `rows` must be null.
  ///  * [defaultColumnWidth] must not be null.
  ///  * [configuration] must not be null (but has a default value).
  RenderTable({
    int columns,
    int rows,
    Map<int, TableColumnWidth> columnWidths,
    TableColumnWidth defaultColumnWidth = const FlexColumnWidth(1.0),
    @required TextDirection textDirection,
    TableBorder border,
    List<Decoration> rowDecorations,
    ImageConfiguration configuration = ImageConfiguration.empty,
    Decoration defaultRowDecoration,
    TableCellVerticalAlignment defaultVerticalAlignment = TableCellVerticalAlignment.top,
    TextBaseline textBaseline,
    List<List<RenderBox>> children
  }) : assert(columns == null || columns >= 0),
       assert(rows == null || rows >= 0),
       assert(rows == null || children == null),
       assert(defaultColumnWidth != null),
       assert(textDirection != null),
       assert(configuration != null),
       _textDirection = textDirection {
    _columns = columns ?? (children != null && children.isNotEmpty ? children.first.length : 0);
    _rows = rows ?? 0;
    _children = <RenderBox>[]..length = _columns * _rows;
    _columnWidths = columnWidths ?? new HashMap<int, TableColumnWidth>();
    _defaultColumnWidth = defaultColumnWidth;
    _border = border;
    this.rowDecorations = rowDecorations; // must use setter to initialize box painters array
    _configuration = configuration;
    _defaultVerticalAlignment = defaultVerticalAlignment;
    _textBaseline = textBaseline;
    children?.forEach(addRow);
  }

  // Children are stored in row-major order.
  // _children.length must be rows * columns
  List<RenderBox> _children = const <RenderBox>[];

  /// The number of vertical alignment lines in this table.
  ///
  /// Changing the number of columns will remove any children that no longer fit
  /// in the table.
  ///
  /// Changing the number of columns is an expensive operation because the table
  /// needs to rearrange its internal representation.
  int get columns => _columns;
  int _columns;
  set columns(int value) {
    assert(value != null);
    assert(value >= 0);
    if (value == columns)
      return;
    final int oldColumns = columns;
    final List<RenderBox> oldChildren = _children;
    _columns = value;
    _children = <RenderBox>[]..length = columns * rows;
    final int columnsToCopy = math.min(columns, oldColumns);
    for (int y = 0; y < rows; y += 1) {
      for (int x = 0; x < columnsToCopy; x += 1)
        _children[x + y * columns] = oldChildren[x + y * oldColumns];
    }
    if (oldColumns > columns) {
      for (int y = 0; y < rows; y += 1) {
        for (int x = columns; x < oldColumns; x += 1) {
          final int xy = x + y * oldColumns;
          if (oldChildren[xy] != null)
            dropChild(oldChildren[xy]);
        }
      }
    }
    markNeedsLayout();
  }

  /// The number of horizontal alignment lines in this table.
  ///
  /// Changing the number of rows will remove any children that no longer fit
  /// in the table.
  int get rows => _rows;
  int _rows;
  set rows(int value) {
    assert(value != null);
    assert(value >= 0);
    if (value == rows)
      return;
    if (_rows > value) {
      for (int xy = columns * value; xy < _children.length; xy += 1) {
        if (_children[xy] != null)
          dropChild(_children[xy]);
      }
    }
    _rows = value;
    _children.length = columns * rows;
    markNeedsLayout();
  }

  /// How the horizontal extents of the columns of this table should be determined.
  ///
  /// If the [Map] has a null entry for a given column, the table uses the
  /// [defaultColumnWidth] instead.
  ///
  /// The layout performance of the table depends critically on which column
  /// sizing algorithms are used here. In particular, [IntrinsicColumnWidth] is
  /// quite expensive because it needs to measure each cell in the column to
  /// determine the intrinsic size of the column.
  Map<int, TableColumnWidth> get columnWidths => new Map<int, TableColumnWidth>.unmodifiable(_columnWidths);
  Map<int, TableColumnWidth> _columnWidths;
  set columnWidths(Map<int, TableColumnWidth> value) {
    value ??= new HashMap<int, TableColumnWidth>();
    if (_columnWidths == value)
      return;
    _columnWidths = value;
    markNeedsLayout();
  }

  /// Determines how the width of column with the given index is determined.
  void setColumnWidth(int column, TableColumnWidth value) {
    if (_columnWidths[column] == value)
      return;
    _columnWidths[column] = value;
    markNeedsLayout();
  }

  /// How to determine with widths of columns that don't have an explicit sizing algorithm.
  ///
  /// Specifically, the [defaultColumnWidth] is used for column `i` if
  /// `columnWidths[i]` is null.
  TableColumnWidth get defaultColumnWidth => _defaultColumnWidth;
  TableColumnWidth _defaultColumnWidth;
  set defaultColumnWidth(TableColumnWidth value) {
    assert(value != null);
    if (defaultColumnWidth == value)
      return;
    _defaultColumnWidth = value;
    markNeedsLayout();
  }

  /// The direction in which the columns are ordered.
  TextDirection get textDirection => _textDirection;
  TextDirection _textDirection;
  set textDirection(TextDirection value) {
    assert(value != null);
    if (_textDirection == value)
      return;
    _textDirection = value;
    markNeedsLayout();
  }

  /// The style to use when painting the boundary and interior divisions of the table.
  TableBorder get border => _border;
  TableBorder _border;
  set border(TableBorder value) {
    if (border == value)
      return;
    _border = value;
    markNeedsPaint();
  }

  /// The decorations to use for each row of the table.
  ///
  /// Row decorations fill the horizontal and vertical extent of each row in
  /// the table, unlike decorations for individual cells, which might not fill
  /// either.
  List<Decoration> get rowDecorations => new List<Decoration>.unmodifiable(_rowDecorations ?? const <Decoration>[]);
  List<Decoration> _rowDecorations;
  List<BoxPainter> _rowDecorationPainters;
  set rowDecorations(List<Decoration> value) {
    if (_rowDecorations == value)
      return;
    _rowDecorations = value;
    if (_rowDecorationPainters != null) {
      for (BoxPainter painter in _rowDecorationPainters)
        painter?.dispose();
    }
    _rowDecorationPainters = _rowDecorations != null ? new List<BoxPainter>(_rowDecorations.length) : null;
  }

  /// The settings to pass to the [rowDecorations] when painting, so that they
  /// can resolve images appropriately. See [ImageProvider.resolve] and
  /// [BoxPainter.paint].
  ImageConfiguration get configuration => _configuration;
  ImageConfiguration _configuration;
  set configuration(ImageConfiguration value) {
    assert(value != null);
    if (value == _configuration)
      return;
    _configuration = value;
    markNeedsPaint();
  }

  /// How cells that do not explicitly specify a vertical alignment are aligned vertically.
  TableCellVerticalAlignment get defaultVerticalAlignment => _defaultVerticalAlignment;
  TableCellVerticalAlignment _defaultVerticalAlignment;
  set defaultVerticalAlignment(TableCellVerticalAlignment value) {
    if (_defaultVerticalAlignment == value)
      return;
    _defaultVerticalAlignment = value;
    markNeedsLayout();
  }

  /// The text baseline to use when aligning rows using [TableCellVerticalAlignment.baseline].
  TextBaseline get textBaseline => _textBaseline;
  TextBaseline _textBaseline;
  set textBaseline(TextBaseline value) {
    if (_textBaseline == value)
      return;
    _textBaseline = value;
    markNeedsLayout();
  }

  @override
  void setupParentData(RenderObject child) {
    if (child.parentData is! TableCellParentData)
      child.parentData = new TableCellParentData();
  }

  /// Replaces the children of this table with the given cells.
  ///
  /// The cells are divided into the specified number of columns before
  /// replacing the existing children.
  ///
  /// If the new cells contain any existing children of the table, those
  /// children are simply moved to their new location in the table rather than
  /// removed from the table and re-added.
  void setFlatChildren(int columns, List<RenderBox> cells) {
    if (cells == _children && columns == _columns)
      return;
    assert(columns >= 0);
    // consider the case of a newly empty table
    if (columns == 0 || cells.isEmpty) {
      assert(cells == null || cells.isEmpty);
      _columns = columns;
      if (_children.isEmpty) {
        assert(_rows == 0);
        return;
      }
      for (RenderBox oldChild in _children) {
        if (oldChild != null)
          dropChild(oldChild);
      }
      _rows = 0;
      _children.clear();
      markNeedsLayout();
      return;
    }
    assert(cells != null);
    assert(cells.length % columns == 0);
    // fill a set with the cells that are moving (it's important not
    // to dropChild a child that's remaining with us, because that
    // would clear their parentData field)
    final Set<RenderBox> lostChildren = new HashSet<RenderBox>();
    for (int y = 0; y < _rows; y += 1) {
      for (int x = 0; x < _columns; x += 1) {
        final int xyOld = x + y * _columns;
        final int xyNew = x + y * columns;
        if (_children[xyOld] != null && (x >= columns || xyNew >= cells.length || _children[xyOld] != cells[xyNew]))
          lostChildren.add(_children[xyOld]);
      }
    }
    // adopt cells that are arriving, and cross cells that are just moving off our list of lostChildren
    int y = 0;
    while (y * columns < cells.length) {
      for (int x = 0; x < columns; x += 1) {
        final int xyNew = x + y * columns;
        final int xyOld = x + y * _columns;
        if (cells[xyNew] != null && (x >= _columns || y >= _rows || _children[xyOld] != cells[xyNew])) {
          if (!lostChildren.remove(cells[xyNew]))
            adoptChild(cells[xyNew]);
        }
      }
      y += 1;
    }
    // drop all the lost children
    lostChildren.forEach(dropChild);
    // update our internal values
    _columns = columns;
    _rows = cells.length ~/ columns;
    _children = cells.toList();
    assert(_children.length == rows * columns);
    markNeedsLayout();
  }

  /// Replaces the children of this table with the given cells.
  void setChildren(List<List<RenderBox>> cells) {
    // TODO(ianh): Make this smarter, like setFlatChildren
    if (cells == null) {
      setFlatChildren(0, null);
      return;
    }
    for (RenderBox oldChild in _children) {
      if (oldChild != null)
        dropChild(oldChild);
    }
    _children.clear();
    _columns = cells.isNotEmpty ? cells.first.length : 0;
    _rows = 0;
    cells.forEach(addRow);
    assert(_children.length == rows * columns);
  }

  /// Adds a row to the end of the table.
  ///
  /// The newly added children must not already have parents.
  void addRow(List<RenderBox> cells) {
    assert(cells.length == columns);
    assert(_children.length == rows * columns);
    _rows += 1;
    _children.addAll(cells);
    for (RenderBox cell in cells) {
      if (cell != null)
        adoptChild(cell);
    }
    markNeedsLayout();
  }

  /// Replaces the child at the given position with the given child.
  ///
  /// If the given child is already located at the given position, this function
  /// does not modify the table. Otherwise, the given child must not already
  /// have a parent.
  void setChild(int x, int y, RenderBox value) {
    assert(x != null);
    assert(y != null);
    assert(x >= 0 && x < columns && y >= 0 && y < rows);
    assert(_children.length == rows * columns);
    final int xy = x + y * columns;
    final RenderBox oldChild = _children[xy];
    if (oldChild == value)
      return;
    if (oldChild != null)
      dropChild(oldChild);
    _children[xy] = value;
    if (value != null)
      adoptChild(value);
  }

  @override
  void attach(PipelineOwner owner) {
    super.attach(owner);
    for (RenderBox child in _children)
      child?.attach(owner);
  }

  @override
  void detach() {
    super.detach();
    if (_rowDecorationPainters != null) {
      for (BoxPainter painter in _rowDecorationPainters)
        painter?.dispose();
      _rowDecorationPainters = null;
    }
    for (RenderBox child in _children)
      child?.detach();
  }

  @override
  void visitChildren(RenderObjectVisitor visitor) {
    assert(_children.length == rows * columns);
    for (RenderBox child in _children) {
      if (child != null)
        visitor(child);
    }
  }

  @override
  double computeMinIntrinsicWidth(double height) {
    assert(_children.length == rows * columns);
    double totalMinWidth = 0.0;
    for (int x = 0; x < columns; x += 1) {
      final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
      final Iterable<RenderBox> columnCells = column(x);
      totalMinWidth += columnWidth.minIntrinsicWidth(columnCells, double.infinity);
    }
    return totalMinWidth;
  }

  @override
  double computeMaxIntrinsicWidth(double height) {
    assert(_children.length == rows * columns);
    double totalMaxWidth = 0.0;
    for (int x = 0; x < columns; x += 1) {
      final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
      final Iterable<RenderBox> columnCells = column(x);
      totalMaxWidth += columnWidth.maxIntrinsicWidth(columnCells, double.infinity);
    }
    return totalMaxWidth;
  }

  @override
  double computeMinIntrinsicHeight(double width) {
    // winner of the 2016 world's most expensive intrinsic dimension function award
    // honorable mention, most likely to improve if taught about memoization award
    assert(_children.length == rows * columns);
    final List<double> widths = _computeColumnWidths(new BoxConstraints.tightForFinite(width: width));
    double rowTop = 0.0;
    for (int y = 0; y < rows; y += 1) {
      double rowHeight = 0.0;
      for (int x = 0; x < columns; x += 1) {
        final int xy = x + y * columns;
        final RenderBox child = _children[xy];
        if (child != null)
          rowHeight = math.max(rowHeight, child.getMaxIntrinsicHeight(widths[x]));
      }
      rowTop += rowHeight;
    }
    return rowTop;
  }

  @override
  double computeMaxIntrinsicHeight(double width) {
    return computeMinIntrinsicHeight(width);
  }

  double _baselineDistance;
  @override
  double computeDistanceToActualBaseline(TextBaseline baseline) {
    // returns the baseline of the first cell that has a baseline in the first row
    assert(!debugNeedsLayout);
    return _baselineDistance;
  }

  /// Returns the list of [RenderBox] objects that are in the given
  /// column, in row order, starting from the first row.
  ///
  /// This is a lazily-evaluated iterable.
  Iterable<RenderBox> column(int x) sync* {
    for (int y = 0; y < rows; y += 1) {
      final int xy = x + y * columns;
      final RenderBox child = _children[xy];
      if (child != null)
        yield child;
    }
  }

  /// Returns the list of [RenderBox] objects that are on the given
  /// row, in column order, starting with the first column.
  ///
  /// This is a lazily-evaluated iterable.
  Iterable<RenderBox> row(int y) sync* {
    final int start = y * columns;
    final int end = (y + 1) * columns;
    for (int xy = start; xy < end; xy += 1) {
      final RenderBox child = _children[xy];
      if (child != null)
        yield child;
    }
  }

  List<double> _computeColumnWidths(BoxConstraints constraints) {
    assert(constraints != null);
    assert(_children.length == rows * columns);
    // We apply the constraints to the column widths in the order of
    // least important to most important:
    // 1. apply the ideal widths (maxIntrinsicWidth)
    // 2. grow the flex columns so that the table has the maxWidth (if
    //    finite) or the minWidth (if not)
    // 3. if there were no flex columns, then grow the table to the
    //    minWidth.
    // 4. apply the maximum width of the table, shrinking columns as
    //    necessary, applying minimum column widths as we go

    // 1. apply ideal widths, and collect information we'll need later
    final List<double> widths = new List<double>(columns);
    final List<double> minWidths = new List<double>(columns);
    final List<double> flexes = new List<double>(columns);
    double tableWidth = 0.0; // running tally of the sum of widths[x] for all x
    double unflexedTableWidth = 0.0; // sum of the maxIntrinsicWidths of any column that has null flex
    double totalFlex = 0.0;
    for (int x = 0; x < columns; x += 1) {
      final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
      final Iterable<RenderBox> columnCells = column(x);
      // apply ideal width (maxIntrinsicWidth)
      final double maxIntrinsicWidth = columnWidth.maxIntrinsicWidth(columnCells, constraints.maxWidth);
      assert(maxIntrinsicWidth.isFinite);
      assert(maxIntrinsicWidth >= 0.0);
      widths[x] = maxIntrinsicWidth;
      tableWidth += maxIntrinsicWidth;
      // collect min width information while we're at it
      final double minIntrinsicWidth = columnWidth.minIntrinsicWidth(columnCells, constraints.maxWidth);
      assert(minIntrinsicWidth.isFinite);
      assert(minIntrinsicWidth >= 0.0);
      minWidths[x] = minIntrinsicWidth;
      assert(maxIntrinsicWidth >= minIntrinsicWidth);
      // collect flex information while we're at it
      final double flex = columnWidth.flex(columnCells);
      if (flex != null) {
        assert(flex.isFinite);
        assert(flex > 0.0);
        flexes[x] = flex;
        totalFlex += flex;
      } else {
        unflexedTableWidth += maxIntrinsicWidth;
      }
    }
    assert(!widths.any((double value) => value == null));
    final double maxWidthConstraint = constraints.maxWidth;
    final double minWidthConstraint = constraints.minWidth;

    // 2. grow the flex columns so that the table has the maxWidth (if
    //    finite) or the minWidth (if not)
    if (totalFlex > 0.0) {
      // this can only grow the table, but it _will_ grow the table at
      // least as big as the target width.
      double targetWidth;
      if (maxWidthConstraint.isFinite) {
        targetWidth = maxWidthConstraint;
      } else {
        targetWidth = minWidthConstraint;
      }
      if (tableWidth < targetWidth) {
        final double remainingWidth = targetWidth - unflexedTableWidth;
        assert(remainingWidth.isFinite);
        assert(remainingWidth >= 0.0);
        for (int x = 0; x < columns; x += 1) {
          if (flexes[x] != null) {
            final double flexedWidth = remainingWidth * flexes[x] / totalFlex;
            assert(flexedWidth.isFinite);
            assert(flexedWidth >= 0.0);
            if (widths[x] < flexedWidth) {
              final double delta = flexedWidth - widths[x];
              tableWidth += delta;
              widths[x] = flexedWidth;
            }
          }
        }
        assert(tableWidth >= targetWidth);
      }
    } else // step 2 and 3 are mutually exclusive

    // 3. if there were no flex columns, then grow the table to the
    //    minWidth.
    if (tableWidth < minWidthConstraint) {
      final double delta = (minWidthConstraint - tableWidth) / columns;
      for (int x = 0; x < columns; x += 1)
        widths[x] += delta;
      tableWidth = minWidthConstraint;
    }

    // beyond this point, unflexedTableWidth is no longer valid
    assert(() { unflexedTableWidth = null; return true; }());

    // 4. apply the maximum width of the table, shrinking columns as
    //    necessary, applying minimum column widths as we go
    if (tableWidth > maxWidthConstraint) {
      double deficit = tableWidth - maxWidthConstraint;
      // Some columns may have low flex but have all the free space.
      // (Consider a case with a 1px wide column of flex 1000.0 and
      // a 1000px wide column of flex 1.0; the sizes coming from the
      // maxIntrinsicWidths. If the maximum table width is 2px, then
      // just applying the flexes to the deficit would result in a
      // table with one column at -998px and one column at 990px,
      // which is wildly unhelpful.)
      // Similarly, some columns may be flexible, but not actually
      // be shrinkable due to a large minimum width. (Consider a
      // case with two columns, one is flex and one isn't, both have
      // 1000px maxIntrinsicWidths, but the flex one has 1000px
      // minIntrinsicWidth also. The whole deficit will have to come
      // from the non-flex column.)
      // So what we do is we repeatedly iterate through the flexible
      // columns shrinking them proportionally until we have no
      // available columns, then do the same to the non-flexible ones.
      int availableColumns = columns;
      while (deficit > 0.0 && totalFlex > 0.0) {
        double newTotalFlex = 0.0;
        for (int x = 0; x < columns; x += 1) {
          if (flexes[x] != null) {
            final double newWidth = widths[x] - deficit * flexes[x] / totalFlex;
            assert(newWidth.isFinite);
            if (newWidth <= minWidths[x]) {
              // shrank to minimum
              deficit -= widths[x] - minWidths[x];
              widths[x] = minWidths[x];
              flexes[x] = null;
              availableColumns -= 1;
            } else {
              deficit -= widths[x] - newWidth;
              widths[x] = newWidth;
              newTotalFlex += flexes[x];
            }
            assert(widths[x] >= 0.0);
          }
        }
        totalFlex = newTotalFlex;
      }
      if (deficit > 0.0) {
        // Now we have to take out the remaining space from the
        // columns that aren't minimum sized.
        // To make this fair, we repeatedly remove equal amounts from
        // each column, clamped to the minimum width, until we run out
        // of columns that aren't at their minWidth.
        do {
          final double delta = deficit / availableColumns;
          int newAvailableColumns = 0;
          for (int x = 0; x < columns; x += 1) {
            final double availableDelta = widths[x] - minWidths[x];
            if (availableDelta > 0.0) {
              if (availableDelta <= delta) {
                // shrank to minimum
                deficit -= widths[x] - minWidths[x];
                widths[x] = minWidths[x];
              } else {
                deficit -= availableDelta;
                widths[x] -= availableDelta;
                newAvailableColumns += 1;
              }
            }
          }
          availableColumns = newAvailableColumns;
        } while (deficit > 0.0 && availableColumns > 0);
      }
    }
    return widths;
  }

  // cache the table geometry for painting purposes
  final List<double> _rowTops = <double>[];
  Iterable<double> _columnLefts;

  /// Returns the position and dimensions of the box that the given
  /// row covers, in this render object's coordinate space (so the
  /// left coordinate is always 0.0).
  ///
  /// The row being queried must exist.
  ///
  /// This is only valid after layout.
  Rect getRowBox(int row) {
    assert(row >= 0);
    assert(row < rows);
    assert(!debugNeedsLayout);
    return new Rect.fromLTRB(0.0, _rowTops[row], size.width, _rowTops[row + 1]);
  }

  @override
  void performLayout() {
    final int rows = this.rows;
    final int columns = this.columns;
    assert(_children.length == rows * columns);
    if (rows * columns == 0) {
      // TODO(ianh): if columns is zero, this should be zero width
      // TODO(ianh): if columns is not zero, this should be based on the column width specifications
      size = constraints.constrain(const Size(0.0, 0.0));
      return;
    }
    final List<double> widths = _computeColumnWidths(constraints);
    final List<double> positions = new List<double>(columns);
    double tableWidth;
    switch (textDirection) {
      case TextDirection.rtl:
        positions[columns - 1] = 0.0;
        for (int x = columns - 2; x >= 0; x -= 1)
          positions[x] = positions[x+1] + widths[x+1];
        _columnLefts = positions.reversed;
        tableWidth = positions.first + widths.first;
        break;
      case TextDirection.ltr:
        positions[0] = 0.0;
        for (int x = 1; x < columns; x += 1)
          positions[x] = positions[x-1] + widths[x-1];
        _columnLefts = positions;
        tableWidth = positions.last + widths.last;
        break;
    }
    assert(!positions.any((double value) => value == null));
    _rowTops.clear();
    _baselineDistance = null;
    // then, lay out each row
    double rowTop = 0.0;
    for (int y = 0; y < rows; y += 1) {
      _rowTops.add(rowTop);
      double rowHeight = 0.0;
      bool haveBaseline = false;
      double beforeBaselineDistance = 0.0;
      double afterBaselineDistance = 0.0;
      final List<double> baselines = new List<double>(columns);
      for (int x = 0; x < columns; x += 1) {
        final int xy = x + y * columns;
        final RenderBox child = _children[xy];
        if (child != null) {
          final TableCellParentData childParentData = child.parentData;
          assert(childParentData != null);
          childParentData.x = x;
          childParentData.y = y;
          switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
            case TableCellVerticalAlignment.baseline:
              assert(textBaseline != null);
              child.layout(new BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
              final double childBaseline = child.getDistanceToBaseline(textBaseline, onlyReal: true);
              if (childBaseline != null) {
                beforeBaselineDistance = math.max(beforeBaselineDistance, childBaseline);
                afterBaselineDistance = math.max(afterBaselineDistance, child.size.height - childBaseline);
                baselines[x] = childBaseline;
                haveBaseline = true;
              } else {
                rowHeight = math.max(rowHeight, child.size.height);
                childParentData.offset = new Offset(positions[x], rowTop);
              }
              break;
            case TableCellVerticalAlignment.top:
            case TableCellVerticalAlignment.middle:
            case TableCellVerticalAlignment.bottom:
              child.layout(new BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
              rowHeight = math.max(rowHeight, child.size.height);
              break;
            case TableCellVerticalAlignment.fill:
              break;
          }
        }
      }
      if (haveBaseline) {
        if (y == 0)
          _baselineDistance = beforeBaselineDistance;
        rowHeight = math.max(rowHeight, beforeBaselineDistance + afterBaselineDistance);
      }
      for (int x = 0; x < columns; x += 1) {
        final int xy = x + y * columns;
        final RenderBox child = _children[xy];
        if (child != null) {
          final TableCellParentData childParentData = child.parentData;
          switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
            case TableCellVerticalAlignment.baseline:
              if (baselines[x] != null)
                childParentData.offset = new Offset(positions[x], rowTop + beforeBaselineDistance - baselines[x]);
              break;
            case TableCellVerticalAlignment.top:
              childParentData.offset = new Offset(positions[x], rowTop);
              break;
            case TableCellVerticalAlignment.middle:
              childParentData.offset = new Offset(positions[x], rowTop + (rowHeight - child.size.height) / 2.0);
              break;
            case TableCellVerticalAlignment.bottom:
              childParentData.offset = new Offset(positions[x], rowTop + rowHeight - child.size.height);
              break;
            case TableCellVerticalAlignment.fill:
              child.layout(new BoxConstraints.tightFor(width: widths[x], height: rowHeight));
              childParentData.offset = new Offset(positions[x], rowTop);
              break;
          }
        }
      }
      rowTop += rowHeight;
    }
    _rowTops.add(rowTop);
    size = constraints.constrain(new Size(tableWidth, rowTop));
    assert(_rowTops.length == rows + 1);
  }

  @override
  bool hitTestChildren(HitTestResult result, { Offset position }) {
    assert(_children.length == rows * columns);
    for (int index = _children.length - 1; index >= 0; index -= 1) {
      final RenderBox child = _children[index];
      if (child != null) {
        final BoxParentData childParentData = child.parentData;
        if (child.hitTest(result, position: position - childParentData.offset))
          return true;
      }
    }
    return false;
  }

  @override
  void paint(PaintingContext context, Offset offset) {
    assert(_children.length == rows * columns);
    if (rows * columns == 0) {
      if (border != null) {
        final Rect borderRect = new Rect.fromLTWH(offset.dx, offset.dy, size.width, 0.0);
        border.paint(context.canvas, borderRect, rows: const <double>[], columns: const <double>[]);
      }
      return;
    }
    assert(_rowTops.length == rows + 1);
    if (_rowDecorations != null) {
      final Canvas canvas = context.canvas;
      for (int y = 0; y < rows; y += 1) {
        if (_rowDecorations.length <= y)
          break;
        if (_rowDecorations[y] != null) {
          _rowDecorationPainters[y] ??= _rowDecorations[y].createBoxPainter(markNeedsPaint);
          _rowDecorationPainters[y].paint(
            canvas,
            new Offset(offset.dx, offset.dy + _rowTops[y]),
            configuration.copyWith(size: new Size(size.width, _rowTops[y+1] - _rowTops[y]))
          );
        }
      }
    }
    for (int index = 0; index < _children.length; index += 1) {
      final RenderBox child = _children[index];
      if (child != null) {
        final BoxParentData childParentData = child.parentData;
        context.paintChild(child, childParentData.offset + offset);
      }
    }
    assert(_rows == _rowTops.length - 1);
    assert(_columns == _columnLefts.length);
    if (border != null) {
      // The border rect might not fill the entire height of this render object
      // if the rows underflow. We always force the columns to fill the width of
      // the render object, which means the columns cannot underflow.
      final Rect borderRect = new Rect.fromLTWH(offset.dx, offset.dy, size.width, _rowTops.last);
      final Iterable<double> rows = _rowTops.getRange(1, _rowTops.length - 1);
      final Iterable<double> columns = _columnLefts.skip(1);
      border.paint(context.canvas, borderRect, rows: rows, columns: columns);
    }
  }

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(new DiagnosticsProperty<TableBorder>('border', border, defaultValue: null));
    properties.add(new DiagnosticsProperty<Map<int, TableColumnWidth>>('specified column widths', _columnWidths, level: _columnWidths.isEmpty ? DiagnosticLevel.hidden : DiagnosticLevel.info));
    properties.add(new DiagnosticsProperty<TableColumnWidth>('default column width', defaultColumnWidth));
    properties.add(new MessageProperty('table size', '$columns\u00D7$rows'));
    properties.add(new IterableProperty<double>('column offsets', _columnLefts, ifNull: 'unknown'));
    properties.add(new IterableProperty<double>('row offsets', _rowTops, ifNull: 'unknown'));
  }

  @override
  List<DiagnosticsNode> debugDescribeChildren() {
    if (_children.isEmpty) {
      return <DiagnosticsNode>[new DiagnosticsNode.message('table is empty')];
    }

    final List<DiagnosticsNode> children = <DiagnosticsNode>[];
    for (int y = 0; y < rows; y += 1) {
      for (int x = 0; x < columns; x += 1) {
        final int xy = x + y * columns;
        final RenderBox child = _children[xy];
        final String name = 'child ($x, $y)';
        if (child != null)
          children.add(child.toDiagnosticsNode(name: name));
        else
          children.add(new DiagnosticsProperty<Object>(name, null, ifNull: 'is null', showSeparator: false));
      }
    }
    return children;
  }
}