1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:collection';
import 'dart:math' as math;
import 'package:flutter/foundation.dart';
import 'box.dart';
import 'object.dart';
import 'table_border.dart';
/// Parent data used by [RenderTable] for its children.
class TableCellParentData extends BoxParentData {
/// Where this cell should be placed vertically.
TableCellVerticalAlignment verticalAlignment;
/// The column that the child was in the last time it was laid out.
int x;
/// The row that the child was in the last time it was laid out.
int y;
@override
String toString() => '${super.toString()}; ${verticalAlignment == null ? "default vertical alignment" : "$verticalAlignment"}';
}
/// Base class to describe how wide a column in a [RenderTable] should be.
///
/// To size a column to a specific number of pixels, use a [FixedColumnWidth].
/// This is the cheapest way to size a column.
///
/// Other algorithms that are relatively cheap include [FlexColumnWidth], which
/// distributes the space equally among the flexible columns,
/// [FractionColumnWidth], which sizes a column based on the size of the
/// table's container.
@immutable
abstract class TableColumnWidth {
/// Abstract const constructor. This constructor enables subclasses to provide
/// const constructors so that they can be used in const expressions.
const TableColumnWidth();
/// The smallest width that the column can have.
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
///
/// The `containerWidth` argument is the `maxWidth` of the incoming
/// constraints for the table, and might be infinite.
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);
/// The ideal width that the column should have. This must be equal
/// to or greater than the [minIntrinsicWidth]. The column might be
/// bigger than this width, e.g. if the column is flexible or if the
/// table's width ends up being forced to be bigger than the sum of
/// all the maxIntrinsicWidth values.
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
///
/// The `containerWidth` argument is the `maxWidth` of the incoming
/// constraints for the table, and might be infinite.
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth);
/// The flex factor to apply to the cell if there is any room left
/// over when laying out the table. The remaining space is
/// distributed to any columns with flex in proportion to their flex
/// value (higher values get more space).
///
/// The `cells` argument is an iterable that provides all the cells
/// in the table for this column. Walking the cells is by definition
/// O(N), so algorithms that do that should be considered expensive.
double flex(Iterable<RenderBox> cells) => null;
@override
String toString() => '$runtimeType';
}
/// Sizes the column according to the intrinsic dimensions of all the
/// cells in that column.
///
/// This is a very expensive way to size a column.
///
/// A flex value can be provided. If specified (and non-null), the
/// column will participate in the distribution of remaining space
/// once all the non-flexible columns have been sized.
class IntrinsicColumnWidth extends TableColumnWidth {
/// Creates a column width based on intrinsic sizing.
///
/// This sizing algorithm is very expensive.
const IntrinsicColumnWidth({ double flex }) : _flex = flex;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
double result = 0.0;
for (RenderBox cell in cells)
result = math.max(result, cell.getMinIntrinsicWidth(double.infinity));
return result;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
double result = 0.0;
for (RenderBox cell in cells)
result = math.max(result, cell.getMaxIntrinsicWidth(double.infinity));
return result;
}
final double _flex;
@override
double flex(Iterable<RenderBox> cells) => _flex;
@override
String toString() => '$runtimeType(flex: ${_flex?.toStringAsFixed(1)})';
}
/// Sizes the column to a specific number of pixels.
///
/// This is the cheapest way to size a column.
class FixedColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fixed number of logical pixels.
///
/// The [value] argument must not be null.
const FixedColumnWidth(this.value) : assert(value != null);
/// The width the column should occupy in logical pixels.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return value;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return value;
}
@override
String toString() => '$runtimeType($value)';
}
/// Sizes the column to a fraction of the table's constraints' maxWidth.
///
/// This is a cheap way to size a column.
class FractionColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fraction of the table's constraints'
/// maxWidth.
///
/// The [value] argument must not be null.
const FractionColumnWidth(this.value) : assert(value != null);
/// The fraction of the table's constraints' maxWidth that this column should
/// occupy.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
if (!containerWidth.isFinite)
return 0.0;
return value * containerWidth;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
if (!containerWidth.isFinite)
return 0.0;
return value * containerWidth;
}
@override
String toString() => '$runtimeType($value)';
}
/// Sizes the column by taking a part of the remaining space once all
/// the other columns have been laid out.
///
/// For example, if two columns have a [FlexColumnWidth], then half the
/// space will go to one and half the space will go to the other.
///
/// This is a cheap way to size a column.
class FlexColumnWidth extends TableColumnWidth {
/// Creates a column width based on a fraction of the remaining space once all
/// the other columns have been laid out.
///
/// The [value] argument must not be null.
const FlexColumnWidth([this.value = 1.0]) : assert(value != null);
/// The reaction of the of the remaining space once all the other columns have
/// been laid out that this column should occupy.
final double value;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return 0.0;
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return 0.0;
}
@override
double flex(Iterable<RenderBox> cells) {
return value;
}
@override
String toString() => '$runtimeType($value)';
}
/// Sizes the column such that it is the size that is the maximum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width or
/// 100px, whichever is bigger, you could use:
///
/// const MaxColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MaxColumnWidth extends TableColumnWidth {
/// Creates a column width that is the maximum of two other column widths.
const MaxColumnWidth(this.a, this.b);
/// A lower bound for the width of this column.
final TableColumnWidth a;
/// Another lower bound for the width of this column.
final TableColumnWidth b;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.max(
a.minIntrinsicWidth(cells, containerWidth),
b.minIntrinsicWidth(cells, containerWidth)
);
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.max(
a.maxIntrinsicWidth(cells, containerWidth),
b.maxIntrinsicWidth(cells, containerWidth)
);
}
@override
double flex(Iterable<RenderBox> cells) {
final double aFlex = a.flex(cells);
if (aFlex == null)
return b.flex(cells);
final double bFlex = b.flex(cells);
if (bFlex == null)
return null;
return math.max(aFlex, bFlex);
}
@override
String toString() => '$runtimeType($a, $b)';
}
/// Sizes the column such that it is the size that is the minimum of
/// two column width specifications.
///
/// For example, to have a column be 10% of the container width but
/// never bigger than 100px, you could use:
///
/// const MinColumnWidth(const FixedColumnWidth(100.0), FractionColumnWidth(0.1))
///
/// Both specifications are evaluated, so if either specification is
/// expensive, so is this.
class MinColumnWidth extends TableColumnWidth {
/// Creates a column width that is the minimum of two other column widths.
const MinColumnWidth(this.a, this.b);
/// An upper bound for the width of this column.
final TableColumnWidth a;
/// Another upper bound for the width of this column.
final TableColumnWidth b;
@override
double minIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.min(
a.minIntrinsicWidth(cells, containerWidth),
b.minIntrinsicWidth(cells, containerWidth)
);
}
@override
double maxIntrinsicWidth(Iterable<RenderBox> cells, double containerWidth) {
return math.min(
a.maxIntrinsicWidth(cells, containerWidth),
b.maxIntrinsicWidth(cells, containerWidth)
);
}
@override
double flex(Iterable<RenderBox> cells) {
final double aFlex = a.flex(cells);
if (aFlex == null)
return b.flex(cells);
final double bFlex = b.flex(cells);
if (bFlex == null)
return null;
return math.min(aFlex, bFlex);
}
@override
String toString() => '$runtimeType($a, $b)';
}
/// Vertical alignment options for cells in [RenderTable] objects.
///
/// This is specified using [TableCellParentData] objects on the
/// [RenderObject.parentData] of the children of the [RenderTable].
enum TableCellVerticalAlignment {
/// Cells with this alignment are placed with their top at the top of the row.
top,
/// Cells with this alignment are vertically centered in the row.
middle,
/// Cells with this alignment are placed with their bottom at the bottom of the row.
bottom,
/// Cells with this alignment are aligned such that they all share the same
/// baseline. Cells with no baseline are top-aligned instead. The baseline
/// used is specified by [RenderTable.textBaseline]. It is not valid to use
/// the baseline value if [RenderTable.textBaseline] is not specified.
///
/// This vertical alignment is relatively expensive because it causes the table
/// to compute the baseline for each cell in the row.
baseline,
/// Cells with this alignment are sized to be as tall as the row, then made to fit the row.
/// If all the cells have this alignment, then the row will have zero height.
fill
}
/// A table where the columns and rows are sized to fit the contents of the cells.
class RenderTable extends RenderBox {
/// Creates a table render object.
///
/// * `columns` must either be null or non-negative. If `columns` is null,
/// the number of columns will be inferred from length of the first sublist
/// of `children`.
/// * `rows` must either be null or non-negative. If `rows` is null, the
/// number of rows will be inferred from the `children`. If `rows` is not
/// null, then `children` must be null.
/// * `children` must either be null or contain lists of all the same length.
/// if `children` is not null, then `rows` must be null.
/// * [defaultColumnWidth] must not be null.
/// * [configuration] must not be null (but has a default value).
RenderTable({
int columns,
int rows,
Map<int, TableColumnWidth> columnWidths,
TableColumnWidth defaultColumnWidth = const FlexColumnWidth(1.0),
@required TextDirection textDirection,
TableBorder border,
List<Decoration> rowDecorations,
ImageConfiguration configuration = ImageConfiguration.empty,
Decoration defaultRowDecoration,
TableCellVerticalAlignment defaultVerticalAlignment = TableCellVerticalAlignment.top,
TextBaseline textBaseline,
List<List<RenderBox>> children
}) : assert(columns == null || columns >= 0),
assert(rows == null || rows >= 0),
assert(rows == null || children == null),
assert(defaultColumnWidth != null),
assert(textDirection != null),
assert(configuration != null),
_textDirection = textDirection {
_columns = columns ?? (children != null && children.isNotEmpty ? children.first.length : 0);
_rows = rows ?? 0;
_children = <RenderBox>[]..length = _columns * _rows;
_columnWidths = columnWidths ?? new HashMap<int, TableColumnWidth>();
_defaultColumnWidth = defaultColumnWidth;
_border = border;
this.rowDecorations = rowDecorations; // must use setter to initialize box painters array
_configuration = configuration;
_defaultVerticalAlignment = defaultVerticalAlignment;
_textBaseline = textBaseline;
children?.forEach(addRow);
}
// Children are stored in row-major order.
// _children.length must be rows * columns
List<RenderBox> _children = const <RenderBox>[];
/// The number of vertical alignment lines in this table.
///
/// Changing the number of columns will remove any children that no longer fit
/// in the table.
///
/// Changing the number of columns is an expensive operation because the table
/// needs to rearrange its internal representation.
int get columns => _columns;
int _columns;
set columns(int value) {
assert(value != null);
assert(value >= 0);
if (value == columns)
return;
final int oldColumns = columns;
final List<RenderBox> oldChildren = _children;
_columns = value;
_children = <RenderBox>[]..length = columns * rows;
final int columnsToCopy = math.min(columns, oldColumns);
for (int y = 0; y < rows; y += 1) {
for (int x = 0; x < columnsToCopy; x += 1)
_children[x + y * columns] = oldChildren[x + y * oldColumns];
}
if (oldColumns > columns) {
for (int y = 0; y < rows; y += 1) {
for (int x = columns; x < oldColumns; x += 1) {
final int xy = x + y * oldColumns;
if (oldChildren[xy] != null)
dropChild(oldChildren[xy]);
}
}
}
markNeedsLayout();
}
/// The number of horizontal alignment lines in this table.
///
/// Changing the number of rows will remove any children that no longer fit
/// in the table.
int get rows => _rows;
int _rows;
set rows(int value) {
assert(value != null);
assert(value >= 0);
if (value == rows)
return;
if (_rows > value) {
for (int xy = columns * value; xy < _children.length; xy += 1) {
if (_children[xy] != null)
dropChild(_children[xy]);
}
}
_rows = value;
_children.length = columns * rows;
markNeedsLayout();
}
/// How the horizontal extents of the columns of this table should be determined.
///
/// If the [Map] has a null entry for a given column, the table uses the
/// [defaultColumnWidth] instead.
///
/// The layout performance of the table depends critically on which column
/// sizing algorithms are used here. In particular, [IntrinsicColumnWidth] is
/// quite expensive because it needs to measure each cell in the column to
/// determine the intrinsic size of the column.
Map<int, TableColumnWidth> get columnWidths => new Map<int, TableColumnWidth>.unmodifiable(_columnWidths);
Map<int, TableColumnWidth> _columnWidths;
set columnWidths(Map<int, TableColumnWidth> value) {
value ??= new HashMap<int, TableColumnWidth>();
if (_columnWidths == value)
return;
_columnWidths = value;
markNeedsLayout();
}
/// Determines how the width of column with the given index is determined.
void setColumnWidth(int column, TableColumnWidth value) {
if (_columnWidths[column] == value)
return;
_columnWidths[column] = value;
markNeedsLayout();
}
/// How to determine with widths of columns that don't have an explicit sizing algorithm.
///
/// Specifically, the [defaultColumnWidth] is used for column `i` if
/// `columnWidths[i]` is null.
TableColumnWidth get defaultColumnWidth => _defaultColumnWidth;
TableColumnWidth _defaultColumnWidth;
set defaultColumnWidth(TableColumnWidth value) {
assert(value != null);
if (defaultColumnWidth == value)
return;
_defaultColumnWidth = value;
markNeedsLayout();
}
/// The direction in which the columns are ordered.
TextDirection get textDirection => _textDirection;
TextDirection _textDirection;
set textDirection(TextDirection value) {
assert(value != null);
if (_textDirection == value)
return;
_textDirection = value;
markNeedsLayout();
}
/// The style to use when painting the boundary and interior divisions of the table.
TableBorder get border => _border;
TableBorder _border;
set border(TableBorder value) {
if (border == value)
return;
_border = value;
markNeedsPaint();
}
/// The decorations to use for each row of the table.
///
/// Row decorations fill the horizontal and vertical extent of each row in
/// the table, unlike decorations for individual cells, which might not fill
/// either.
List<Decoration> get rowDecorations => new List<Decoration>.unmodifiable(_rowDecorations ?? const <Decoration>[]);
List<Decoration> _rowDecorations;
List<BoxPainter> _rowDecorationPainters;
set rowDecorations(List<Decoration> value) {
if (_rowDecorations == value)
return;
_rowDecorations = value;
if (_rowDecorationPainters != null) {
for (BoxPainter painter in _rowDecorationPainters)
painter?.dispose();
}
_rowDecorationPainters = _rowDecorations != null ? new List<BoxPainter>(_rowDecorations.length) : null;
}
/// The settings to pass to the [rowDecorations] when painting, so that they
/// can resolve images appropriately. See [ImageProvider.resolve] and
/// [BoxPainter.paint].
ImageConfiguration get configuration => _configuration;
ImageConfiguration _configuration;
set configuration(ImageConfiguration value) {
assert(value != null);
if (value == _configuration)
return;
_configuration = value;
markNeedsPaint();
}
/// How cells that do not explicitly specify a vertical alignment are aligned vertically.
TableCellVerticalAlignment get defaultVerticalAlignment => _defaultVerticalAlignment;
TableCellVerticalAlignment _defaultVerticalAlignment;
set defaultVerticalAlignment(TableCellVerticalAlignment value) {
if (_defaultVerticalAlignment == value)
return;
_defaultVerticalAlignment = value;
markNeedsLayout();
}
/// The text baseline to use when aligning rows using [TableCellVerticalAlignment.baseline].
TextBaseline get textBaseline => _textBaseline;
TextBaseline _textBaseline;
set textBaseline(TextBaseline value) {
if (_textBaseline == value)
return;
_textBaseline = value;
markNeedsLayout();
}
@override
void setupParentData(RenderObject child) {
if (child.parentData is! TableCellParentData)
child.parentData = new TableCellParentData();
}
/// Replaces the children of this table with the given cells.
///
/// The cells are divided into the specified number of columns before
/// replacing the existing children.
///
/// If the new cells contain any existing children of the table, those
/// children are simply moved to their new location in the table rather than
/// removed from the table and re-added.
void setFlatChildren(int columns, List<RenderBox> cells) {
if (cells == _children && columns == _columns)
return;
assert(columns >= 0);
// consider the case of a newly empty table
if (columns == 0 || cells.isEmpty) {
assert(cells == null || cells.isEmpty);
_columns = columns;
if (_children.isEmpty) {
assert(_rows == 0);
return;
}
for (RenderBox oldChild in _children) {
if (oldChild != null)
dropChild(oldChild);
}
_rows = 0;
_children.clear();
markNeedsLayout();
return;
}
assert(cells != null);
assert(cells.length % columns == 0);
// fill a set with the cells that are moving (it's important not
// to dropChild a child that's remaining with us, because that
// would clear their parentData field)
final Set<RenderBox> lostChildren = new HashSet<RenderBox>();
for (int y = 0; y < _rows; y += 1) {
for (int x = 0; x < _columns; x += 1) {
final int xyOld = x + y * _columns;
final int xyNew = x + y * columns;
if (_children[xyOld] != null && (x >= columns || xyNew >= cells.length || _children[xyOld] != cells[xyNew]))
lostChildren.add(_children[xyOld]);
}
}
// adopt cells that are arriving, and cross cells that are just moving off our list of lostChildren
int y = 0;
while (y * columns < cells.length) {
for (int x = 0; x < columns; x += 1) {
final int xyNew = x + y * columns;
final int xyOld = x + y * _columns;
if (cells[xyNew] != null && (x >= _columns || y >= _rows || _children[xyOld] != cells[xyNew])) {
if (!lostChildren.remove(cells[xyNew]))
adoptChild(cells[xyNew]);
}
}
y += 1;
}
// drop all the lost children
lostChildren.forEach(dropChild);
// update our internal values
_columns = columns;
_rows = cells.length ~/ columns;
_children = cells.toList();
assert(_children.length == rows * columns);
markNeedsLayout();
}
/// Replaces the children of this table with the given cells.
void setChildren(List<List<RenderBox>> cells) {
// TODO(ianh): Make this smarter, like setFlatChildren
if (cells == null) {
setFlatChildren(0, null);
return;
}
for (RenderBox oldChild in _children) {
if (oldChild != null)
dropChild(oldChild);
}
_children.clear();
_columns = cells.isNotEmpty ? cells.first.length : 0;
_rows = 0;
cells.forEach(addRow);
assert(_children.length == rows * columns);
}
/// Adds a row to the end of the table.
///
/// The newly added children must not already have parents.
void addRow(List<RenderBox> cells) {
assert(cells.length == columns);
assert(_children.length == rows * columns);
_rows += 1;
_children.addAll(cells);
for (RenderBox cell in cells) {
if (cell != null)
adoptChild(cell);
}
markNeedsLayout();
}
/// Replaces the child at the given position with the given child.
///
/// If the given child is already located at the given position, this function
/// does not modify the table. Otherwise, the given child must not already
/// have a parent.
void setChild(int x, int y, RenderBox value) {
assert(x != null);
assert(y != null);
assert(x >= 0 && x < columns && y >= 0 && y < rows);
assert(_children.length == rows * columns);
final int xy = x + y * columns;
final RenderBox oldChild = _children[xy];
if (oldChild == value)
return;
if (oldChild != null)
dropChild(oldChild);
_children[xy] = value;
if (value != null)
adoptChild(value);
}
@override
void attach(PipelineOwner owner) {
super.attach(owner);
for (RenderBox child in _children)
child?.attach(owner);
}
@override
void detach() {
super.detach();
if (_rowDecorationPainters != null) {
for (BoxPainter painter in _rowDecorationPainters)
painter?.dispose();
_rowDecorationPainters = null;
}
for (RenderBox child in _children)
child?.detach();
}
@override
void visitChildren(RenderObjectVisitor visitor) {
assert(_children.length == rows * columns);
for (RenderBox child in _children) {
if (child != null)
visitor(child);
}
}
@override
double computeMinIntrinsicWidth(double height) {
assert(_children.length == rows * columns);
double totalMinWidth = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
totalMinWidth += columnWidth.minIntrinsicWidth(columnCells, double.infinity);
}
return totalMinWidth;
}
@override
double computeMaxIntrinsicWidth(double height) {
assert(_children.length == rows * columns);
double totalMaxWidth = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
totalMaxWidth += columnWidth.maxIntrinsicWidth(columnCells, double.infinity);
}
return totalMaxWidth;
}
@override
double computeMinIntrinsicHeight(double width) {
// winner of the 2016 world's most expensive intrinsic dimension function award
// honorable mention, most likely to improve if taught about memoization award
assert(_children.length == rows * columns);
final List<double> widths = _computeColumnWidths(new BoxConstraints.tightForFinite(width: width));
double rowTop = 0.0;
for (int y = 0; y < rows; y += 1) {
double rowHeight = 0.0;
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox child = _children[xy];
if (child != null)
rowHeight = math.max(rowHeight, child.getMaxIntrinsicHeight(widths[x]));
}
rowTop += rowHeight;
}
return rowTop;
}
@override
double computeMaxIntrinsicHeight(double width) {
return computeMinIntrinsicHeight(width);
}
double _baselineDistance;
@override
double computeDistanceToActualBaseline(TextBaseline baseline) {
// returns the baseline of the first cell that has a baseline in the first row
assert(!debugNeedsLayout);
return _baselineDistance;
}
/// Returns the list of [RenderBox] objects that are in the given
/// column, in row order, starting from the first row.
///
/// This is a lazily-evaluated iterable.
Iterable<RenderBox> column(int x) sync* {
for (int y = 0; y < rows; y += 1) {
final int xy = x + y * columns;
final RenderBox child = _children[xy];
if (child != null)
yield child;
}
}
/// Returns the list of [RenderBox] objects that are on the given
/// row, in column order, starting with the first column.
///
/// This is a lazily-evaluated iterable.
Iterable<RenderBox> row(int y) sync* {
final int start = y * columns;
final int end = (y + 1) * columns;
for (int xy = start; xy < end; xy += 1) {
final RenderBox child = _children[xy];
if (child != null)
yield child;
}
}
List<double> _computeColumnWidths(BoxConstraints constraints) {
assert(constraints != null);
assert(_children.length == rows * columns);
// We apply the constraints to the column widths in the order of
// least important to most important:
// 1. apply the ideal widths (maxIntrinsicWidth)
// 2. grow the flex columns so that the table has the maxWidth (if
// finite) or the minWidth (if not)
// 3. if there were no flex columns, then grow the table to the
// minWidth.
// 4. apply the maximum width of the table, shrinking columns as
// necessary, applying minimum column widths as we go
// 1. apply ideal widths, and collect information we'll need later
final List<double> widths = new List<double>(columns);
final List<double> minWidths = new List<double>(columns);
final List<double> flexes = new List<double>(columns);
double tableWidth = 0.0; // running tally of the sum of widths[x] for all x
double unflexedTableWidth = 0.0; // sum of the maxIntrinsicWidths of any column that has null flex
double totalFlex = 0.0;
for (int x = 0; x < columns; x += 1) {
final TableColumnWidth columnWidth = _columnWidths[x] ?? defaultColumnWidth;
final Iterable<RenderBox> columnCells = column(x);
// apply ideal width (maxIntrinsicWidth)
final double maxIntrinsicWidth = columnWidth.maxIntrinsicWidth(columnCells, constraints.maxWidth);
assert(maxIntrinsicWidth.isFinite);
assert(maxIntrinsicWidth >= 0.0);
widths[x] = maxIntrinsicWidth;
tableWidth += maxIntrinsicWidth;
// collect min width information while we're at it
final double minIntrinsicWidth = columnWidth.minIntrinsicWidth(columnCells, constraints.maxWidth);
assert(minIntrinsicWidth.isFinite);
assert(minIntrinsicWidth >= 0.0);
minWidths[x] = minIntrinsicWidth;
assert(maxIntrinsicWidth >= minIntrinsicWidth);
// collect flex information while we're at it
final double flex = columnWidth.flex(columnCells);
if (flex != null) {
assert(flex.isFinite);
assert(flex > 0.0);
flexes[x] = flex;
totalFlex += flex;
} else {
unflexedTableWidth += maxIntrinsicWidth;
}
}
assert(!widths.any((double value) => value == null));
final double maxWidthConstraint = constraints.maxWidth;
final double minWidthConstraint = constraints.minWidth;
// 2. grow the flex columns so that the table has the maxWidth (if
// finite) or the minWidth (if not)
if (totalFlex > 0.0) {
// this can only grow the table, but it _will_ grow the table at
// least as big as the target width.
double targetWidth;
if (maxWidthConstraint.isFinite) {
targetWidth = maxWidthConstraint;
} else {
targetWidth = minWidthConstraint;
}
if (tableWidth < targetWidth) {
final double remainingWidth = targetWidth - unflexedTableWidth;
assert(remainingWidth.isFinite);
assert(remainingWidth >= 0.0);
for (int x = 0; x < columns; x += 1) {
if (flexes[x] != null) {
final double flexedWidth = remainingWidth * flexes[x] / totalFlex;
assert(flexedWidth.isFinite);
assert(flexedWidth >= 0.0);
if (widths[x] < flexedWidth) {
final double delta = flexedWidth - widths[x];
tableWidth += delta;
widths[x] = flexedWidth;
}
}
}
assert(tableWidth >= targetWidth);
}
} else // step 2 and 3 are mutually exclusive
// 3. if there were no flex columns, then grow the table to the
// minWidth.
if (tableWidth < minWidthConstraint) {
final double delta = (minWidthConstraint - tableWidth) / columns;
for (int x = 0; x < columns; x += 1)
widths[x] += delta;
tableWidth = minWidthConstraint;
}
// beyond this point, unflexedTableWidth is no longer valid
assert(() { unflexedTableWidth = null; return true; }());
// 4. apply the maximum width of the table, shrinking columns as
// necessary, applying minimum column widths as we go
if (tableWidth > maxWidthConstraint) {
double deficit = tableWidth - maxWidthConstraint;
// Some columns may have low flex but have all the free space.
// (Consider a case with a 1px wide column of flex 1000.0 and
// a 1000px wide column of flex 1.0; the sizes coming from the
// maxIntrinsicWidths. If the maximum table width is 2px, then
// just applying the flexes to the deficit would result in a
// table with one column at -998px and one column at 990px,
// which is wildly unhelpful.)
// Similarly, some columns may be flexible, but not actually
// be shrinkable due to a large minimum width. (Consider a
// case with two columns, one is flex and one isn't, both have
// 1000px maxIntrinsicWidths, but the flex one has 1000px
// minIntrinsicWidth also. The whole deficit will have to come
// from the non-flex column.)
// So what we do is we repeatedly iterate through the flexible
// columns shrinking them proportionally until we have no
// available columns, then do the same to the non-flexible ones.
int availableColumns = columns;
while (deficit > 0.0 && totalFlex > 0.0) {
double newTotalFlex = 0.0;
for (int x = 0; x < columns; x += 1) {
if (flexes[x] != null) {
final double newWidth = widths[x] - deficit * flexes[x] / totalFlex;
assert(newWidth.isFinite);
if (newWidth <= minWidths[x]) {
// shrank to minimum
deficit -= widths[x] - minWidths[x];
widths[x] = minWidths[x];
flexes[x] = null;
availableColumns -= 1;
} else {
deficit -= widths[x] - newWidth;
widths[x] = newWidth;
newTotalFlex += flexes[x];
}
assert(widths[x] >= 0.0);
}
}
totalFlex = newTotalFlex;
}
if (deficit > 0.0) {
// Now we have to take out the remaining space from the
// columns that aren't minimum sized.
// To make this fair, we repeatedly remove equal amounts from
// each column, clamped to the minimum width, until we run out
// of columns that aren't at their minWidth.
do {
final double delta = deficit / availableColumns;
int newAvailableColumns = 0;
for (int x = 0; x < columns; x += 1) {
final double availableDelta = widths[x] - minWidths[x];
if (availableDelta > 0.0) {
if (availableDelta <= delta) {
// shrank to minimum
deficit -= widths[x] - minWidths[x];
widths[x] = minWidths[x];
} else {
deficit -= availableDelta;
widths[x] -= availableDelta;
newAvailableColumns += 1;
}
}
}
availableColumns = newAvailableColumns;
} while (deficit > 0.0 && availableColumns > 0);
}
}
return widths;
}
// cache the table geometry for painting purposes
final List<double> _rowTops = <double>[];
Iterable<double> _columnLefts;
/// Returns the position and dimensions of the box that the given
/// row covers, in this render object's coordinate space (so the
/// left coordinate is always 0.0).
///
/// The row being queried must exist.
///
/// This is only valid after layout.
Rect getRowBox(int row) {
assert(row >= 0);
assert(row < rows);
assert(!debugNeedsLayout);
return new Rect.fromLTRB(0.0, _rowTops[row], size.width, _rowTops[row + 1]);
}
@override
void performLayout() {
final int rows = this.rows;
final int columns = this.columns;
assert(_children.length == rows * columns);
if (rows * columns == 0) {
// TODO(ianh): if columns is zero, this should be zero width
// TODO(ianh): if columns is not zero, this should be based on the column width specifications
size = constraints.constrain(const Size(0.0, 0.0));
return;
}
final List<double> widths = _computeColumnWidths(constraints);
final List<double> positions = new List<double>(columns);
double tableWidth;
switch (textDirection) {
case TextDirection.rtl:
positions[columns - 1] = 0.0;
for (int x = columns - 2; x >= 0; x -= 1)
positions[x] = positions[x+1] + widths[x+1];
_columnLefts = positions.reversed;
tableWidth = positions.first + widths.first;
break;
case TextDirection.ltr:
positions[0] = 0.0;
for (int x = 1; x < columns; x += 1)
positions[x] = positions[x-1] + widths[x-1];
_columnLefts = positions;
tableWidth = positions.last + widths.last;
break;
}
assert(!positions.any((double value) => value == null));
_rowTops.clear();
_baselineDistance = null;
// then, lay out each row
double rowTop = 0.0;
for (int y = 0; y < rows; y += 1) {
_rowTops.add(rowTop);
double rowHeight = 0.0;
bool haveBaseline = false;
double beforeBaselineDistance = 0.0;
double afterBaselineDistance = 0.0;
final List<double> baselines = new List<double>(columns);
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox child = _children[xy];
if (child != null) {
final TableCellParentData childParentData = child.parentData;
assert(childParentData != null);
childParentData.x = x;
childParentData.y = y;
switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
case TableCellVerticalAlignment.baseline:
assert(textBaseline != null);
child.layout(new BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
final double childBaseline = child.getDistanceToBaseline(textBaseline, onlyReal: true);
if (childBaseline != null) {
beforeBaselineDistance = math.max(beforeBaselineDistance, childBaseline);
afterBaselineDistance = math.max(afterBaselineDistance, child.size.height - childBaseline);
baselines[x] = childBaseline;
haveBaseline = true;
} else {
rowHeight = math.max(rowHeight, child.size.height);
childParentData.offset = new Offset(positions[x], rowTop);
}
break;
case TableCellVerticalAlignment.top:
case TableCellVerticalAlignment.middle:
case TableCellVerticalAlignment.bottom:
child.layout(new BoxConstraints.tightFor(width: widths[x]), parentUsesSize: true);
rowHeight = math.max(rowHeight, child.size.height);
break;
case TableCellVerticalAlignment.fill:
break;
}
}
}
if (haveBaseline) {
if (y == 0)
_baselineDistance = beforeBaselineDistance;
rowHeight = math.max(rowHeight, beforeBaselineDistance + afterBaselineDistance);
}
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox child = _children[xy];
if (child != null) {
final TableCellParentData childParentData = child.parentData;
switch (childParentData.verticalAlignment ?? defaultVerticalAlignment) {
case TableCellVerticalAlignment.baseline:
if (baselines[x] != null)
childParentData.offset = new Offset(positions[x], rowTop + beforeBaselineDistance - baselines[x]);
break;
case TableCellVerticalAlignment.top:
childParentData.offset = new Offset(positions[x], rowTop);
break;
case TableCellVerticalAlignment.middle:
childParentData.offset = new Offset(positions[x], rowTop + (rowHeight - child.size.height) / 2.0);
break;
case TableCellVerticalAlignment.bottom:
childParentData.offset = new Offset(positions[x], rowTop + rowHeight - child.size.height);
break;
case TableCellVerticalAlignment.fill:
child.layout(new BoxConstraints.tightFor(width: widths[x], height: rowHeight));
childParentData.offset = new Offset(positions[x], rowTop);
break;
}
}
}
rowTop += rowHeight;
}
_rowTops.add(rowTop);
size = constraints.constrain(new Size(tableWidth, rowTop));
assert(_rowTops.length == rows + 1);
}
@override
bool hitTestChildren(HitTestResult result, { Offset position }) {
assert(_children.length == rows * columns);
for (int index = _children.length - 1; index >= 0; index -= 1) {
final RenderBox child = _children[index];
if (child != null) {
final BoxParentData childParentData = child.parentData;
if (child.hitTest(result, position: position - childParentData.offset))
return true;
}
}
return false;
}
@override
void paint(PaintingContext context, Offset offset) {
assert(_children.length == rows * columns);
if (rows * columns == 0) {
if (border != null) {
final Rect borderRect = new Rect.fromLTWH(offset.dx, offset.dy, size.width, 0.0);
border.paint(context.canvas, borderRect, rows: const <double>[], columns: const <double>[]);
}
return;
}
assert(_rowTops.length == rows + 1);
if (_rowDecorations != null) {
final Canvas canvas = context.canvas;
for (int y = 0; y < rows; y += 1) {
if (_rowDecorations.length <= y)
break;
if (_rowDecorations[y] != null) {
_rowDecorationPainters[y] ??= _rowDecorations[y].createBoxPainter(markNeedsPaint);
_rowDecorationPainters[y].paint(
canvas,
new Offset(offset.dx, offset.dy + _rowTops[y]),
configuration.copyWith(size: new Size(size.width, _rowTops[y+1] - _rowTops[y]))
);
}
}
}
for (int index = 0; index < _children.length; index += 1) {
final RenderBox child = _children[index];
if (child != null) {
final BoxParentData childParentData = child.parentData;
context.paintChild(child, childParentData.offset + offset);
}
}
assert(_rows == _rowTops.length - 1);
assert(_columns == _columnLefts.length);
if (border != null) {
// The border rect might not fill the entire height of this render object
// if the rows underflow. We always force the columns to fill the width of
// the render object, which means the columns cannot underflow.
final Rect borderRect = new Rect.fromLTWH(offset.dx, offset.dy, size.width, _rowTops.last);
final Iterable<double> rows = _rowTops.getRange(1, _rowTops.length - 1);
final Iterable<double> columns = _columnLefts.skip(1);
border.paint(context.canvas, borderRect, rows: rows, columns: columns);
}
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(new DiagnosticsProperty<TableBorder>('border', border, defaultValue: null));
properties.add(new DiagnosticsProperty<Map<int, TableColumnWidth>>('specified column widths', _columnWidths, level: _columnWidths.isEmpty ? DiagnosticLevel.hidden : DiagnosticLevel.info));
properties.add(new DiagnosticsProperty<TableColumnWidth>('default column width', defaultColumnWidth));
properties.add(new MessageProperty('table size', '$columns\u00D7$rows'));
properties.add(new IterableProperty<double>('column offsets', _columnLefts, ifNull: 'unknown'));
properties.add(new IterableProperty<double>('row offsets', _rowTops, ifNull: 'unknown'));
}
@override
List<DiagnosticsNode> debugDescribeChildren() {
if (_children.isEmpty) {
return <DiagnosticsNode>[new DiagnosticsNode.message('table is empty')];
}
final List<DiagnosticsNode> children = <DiagnosticsNode>[];
for (int y = 0; y < rows; y += 1) {
for (int x = 0; x < columns; x += 1) {
final int xy = x + y * columns;
final RenderBox child = _children[xy];
final String name = 'child ($x, $y)';
if (child != null)
children.add(child.toDiagnosticsNode(name: name));
else
children.add(new DiagnosticsProperty<Object>(name, null, ifNull: 'is null', showSeparator: false));
}
}
return children;
}
}