1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'dart:ui' show lerpDouble;
import 'package:flutter/foundation.dart';
import 'box.dart';
import 'layer.dart';
import 'layout_helper.dart';
import 'object.dart';
/// An immutable 2D, axis-aligned, floating-point rectangle whose coordinates
/// are given relative to another rectangle's edges, known as the container.
/// Since the dimensions of the rectangle are relative to those of the
/// container, this class has no width and height members. To determine the
/// width or height of the rectangle, convert it to a [Rect] using [toRect()]
/// (passing the container's own Rect), and then examine that object.
///
/// The fields [left], [right], [bottom], and [top] must not be null.
@immutable
class RelativeRect {
/// Creates a RelativeRect with the given values.
///
/// The arguments must not be null.
const RelativeRect.fromLTRB(this.left, this.top, this.right, this.bottom);
/// Creates a RelativeRect from a Rect and a Size. The Rect (first argument)
/// and the RelativeRect (the output) are in the coordinate space of the
/// rectangle described by the Size, with 0,0 being at the top left.
factory RelativeRect.fromSize(Rect rect, Size container) {
return RelativeRect.fromLTRB(rect.left, rect.top, container.width - rect.right, container.height - rect.bottom);
}
/// Creates a RelativeRect from two Rects. The second Rect provides the
/// container, the first provides the rectangle, in the same coordinate space,
/// that is to be converted to a RelativeRect. The output will be in the
/// container's coordinate space.
///
/// For example, if the top left of the rect is at 0,0, and the top left of
/// the container is at 100,100, then the top left of the output will be at
/// -100,-100.
///
/// If the first rect is actually in the container's coordinate space, then
/// use [RelativeRect.fromSize] and pass the container's size as the second
/// argument instead.
factory RelativeRect.fromRect(Rect rect, Rect container) {
return RelativeRect.fromLTRB(
rect.left - container.left,
rect.top - container.top,
container.right - rect.right,
container.bottom - rect.bottom,
);
}
/// Creates a RelativeRect from horizontal position using `start` and `end`
/// rather than `left` and `right`.
///
/// If `textDirection` is [TextDirection.rtl], then the `start` argument is
/// used for the [right] property and the `end` argument is used for the
/// [left] property. Otherwise, if `textDirection` is [TextDirection.ltr],
/// then the `start` argument is used for the [left] property and the `end`
/// argument is used for the [right] property.
factory RelativeRect.fromDirectional({
required TextDirection textDirection,
required double start,
required double top,
required double end,
required double bottom,
}) {
double left;
double right;
switch (textDirection) {
case TextDirection.rtl:
left = end;
right = start;
case TextDirection.ltr:
left = start;
right = end;
}
return RelativeRect.fromLTRB(left, top, right, bottom);
}
/// A rect that covers the entire container.
static const RelativeRect fill = RelativeRect.fromLTRB(0.0, 0.0, 0.0, 0.0);
/// Distance from the left side of the container to the left side of this rectangle.
///
/// May be negative if the left side of the rectangle is outside of the container.
final double left;
/// Distance from the top side of the container to the top side of this rectangle.
///
/// May be negative if the top side of the rectangle is outside of the container.
final double top;
/// Distance from the right side of the container to the right side of this rectangle.
///
/// May be positive if the right side of the rectangle is outside of the container.
final double right;
/// Distance from the bottom side of the container to the bottom side of this rectangle.
///
/// May be positive if the bottom side of the rectangle is outside of the container.
final double bottom;
/// Returns whether any of the values are greater than zero.
///
/// This corresponds to one of the sides ([left], [top], [right], or [bottom]) having
/// some positive inset towards the center.
bool get hasInsets => left > 0.0 || top > 0.0 || right > 0.0 || bottom > 0.0;
/// Returns a new rectangle object translated by the given offset.
RelativeRect shift(Offset offset) {
return RelativeRect.fromLTRB(left + offset.dx, top + offset.dy, right - offset.dx, bottom - offset.dy);
}
/// Returns a new rectangle with edges moved outwards by the given delta.
RelativeRect inflate(double delta) {
return RelativeRect.fromLTRB(left - delta, top - delta, right - delta, bottom - delta);
}
/// Returns a new rectangle with edges moved inwards by the given delta.
RelativeRect deflate(double delta) {
return inflate(-delta);
}
/// Returns a new rectangle that is the intersection of the given rectangle and this rectangle.
RelativeRect intersect(RelativeRect other) {
return RelativeRect.fromLTRB(
math.max(left, other.left),
math.max(top, other.top),
math.max(right, other.right),
math.max(bottom, other.bottom),
);
}
/// Convert this [RelativeRect] to a [Rect], in the coordinate space of the container.
///
/// See also:
///
/// * [toSize], which returns the size part of the rect, based on the size of
/// the container.
Rect toRect(Rect container) {
return Rect.fromLTRB(left, top, container.width - right, container.height - bottom);
}
/// Convert this [RelativeRect] to a [Size], assuming a container with the given size.
///
/// See also:
///
/// * [toRect], which also computes the position relative to the container.
Size toSize(Size container) {
return Size(container.width - left - right, container.height - top - bottom);
}
/// Linearly interpolate between two RelativeRects.
///
/// If either rect is null, this function interpolates from [RelativeRect.fill].
///
/// {@macro dart.ui.shadow.lerp}
static RelativeRect? lerp(RelativeRect? a, RelativeRect? b, double t) {
if (identical(a, b)) {
return a;
}
if (a == null) {
return RelativeRect.fromLTRB(b!.left * t, b.top * t, b.right * t, b.bottom * t);
}
if (b == null) {
final double k = 1.0 - t;
return RelativeRect.fromLTRB(b!.left * k, b.top * k, b.right * k, b.bottom * k);
}
return RelativeRect.fromLTRB(
lerpDouble(a.left, b.left, t)!,
lerpDouble(a.top, b.top, t)!,
lerpDouble(a.right, b.right, t)!,
lerpDouble(a.bottom, b.bottom, t)!,
);
}
@override
bool operator ==(Object other) {
if (identical(this, other)) {
return true;
}
return other is RelativeRect
&& other.left == left
&& other.top == top
&& other.right == right
&& other.bottom == bottom;
}
@override
int get hashCode => Object.hash(left, top, right, bottom);
@override
String toString() => 'RelativeRect.fromLTRB(${left.toStringAsFixed(1)}, ${top.toStringAsFixed(1)}, ${right.toStringAsFixed(1)}, ${bottom.toStringAsFixed(1)})';
}
/// Parent data for use with [RenderStack].
class StackParentData extends ContainerBoxParentData<RenderBox> {
/// The distance by which the child's top edge is inset from the top of the stack.
double? top;
/// The distance by which the child's right edge is inset from the right of the stack.
double? right;
/// The distance by which the child's bottom edge is inset from the bottom of the stack.
double? bottom;
/// The distance by which the child's left edge is inset from the left of the stack.
double? left;
/// The child's width.
///
/// Ignored if both left and right are non-null.
double? width;
/// The child's height.
///
/// Ignored if both top and bottom are non-null.
double? height;
/// Get or set the current values in terms of a RelativeRect object.
RelativeRect get rect => RelativeRect.fromLTRB(left!, top!, right!, bottom!);
set rect(RelativeRect value) {
top = value.top;
right = value.right;
bottom = value.bottom;
left = value.left;
}
/// Whether this child is considered positioned.
///
/// A child is positioned if any of the top, right, bottom, or left properties
/// are non-null. Positioned children do not factor into determining the size
/// of the stack but are instead placed relative to the non-positioned
/// children in the stack.
bool get isPositioned => top != null || right != null || bottom != null || left != null || width != null || height != null;
@override
String toString() {
final List<String> values = <String>[
if (top != null) 'top=${debugFormatDouble(top)}',
if (right != null) 'right=${debugFormatDouble(right)}',
if (bottom != null) 'bottom=${debugFormatDouble(bottom)}',
if (left != null) 'left=${debugFormatDouble(left)}',
if (width != null) 'width=${debugFormatDouble(width)}',
if (height != null) 'height=${debugFormatDouble(height)}',
];
if (values.isEmpty) {
values.add('not positioned');
}
values.add(super.toString());
return values.join('; ');
}
}
/// How to size the non-positioned children of a [Stack].
///
/// This enum is used with [Stack.fit] and [RenderStack.fit] to control
/// how the [BoxConstraints] passed from the stack's parent to the stack's child
/// are adjusted.
///
/// See also:
///
/// * [Stack], the widget that uses this.
/// * [RenderStack], the render object that implements the stack algorithm.
enum StackFit {
/// The constraints passed to the stack from its parent are loosened.
///
/// For example, if the stack has constraints that force it to 350x600, then
/// this would allow the non-positioned children of the stack to have any
/// width from zero to 350 and any height from zero to 600.
///
/// See also:
///
/// * [Center], which loosens the constraints passed to its child and then
/// centers the child in itself.
/// * [BoxConstraints.loosen], which implements the loosening of box
/// constraints.
loose,
/// The constraints passed to the stack from its parent are tightened to the
/// biggest size allowed.
///
/// For example, if the stack has loose constraints with a width in the range
/// 10 to 100 and a height in the range 0 to 600, then the non-positioned
/// children of the stack would all be sized as 100 pixels wide and 600 high.
expand,
/// The constraints passed to the stack from its parent are passed unmodified
/// to the non-positioned children.
///
/// For example, if a [Stack] is an [Expanded] child of a [Row], the
/// horizontal constraints will be tight and the vertical constraints will be
/// loose.
passthrough,
}
/// Implements the stack layout algorithm.
///
/// In a stack layout, the children are positioned on top of each other in the
/// order in which they appear in the child list. First, the non-positioned
/// children (those with null values for top, right, bottom, and left) are
/// laid out and initially placed in the upper-left corner of the stack. The
/// stack is then sized to enclose all of the non-positioned children. If there
/// are no non-positioned children, the stack becomes as large as possible.
///
/// The final location of non-positioned children is determined by the alignment
/// parameter. The left of each non-positioned child becomes the
/// difference between the child's width and the stack's width scaled by
/// alignment.x. The top of each non-positioned child is computed
/// similarly and scaled by alignment.y. So if the alignment x and y properties
/// are 0.0 (the default) then the non-positioned children remain in the
/// upper-left corner. If the alignment x and y properties are 0.5 then the
/// non-positioned children are centered within the stack.
///
/// Next, the positioned children are laid out. If a child has top and bottom
/// values that are both non-null, the child is given a fixed height determined
/// by subtracting the sum of the top and bottom values from the height of the stack.
/// Similarly, if the child has right and left values that are both non-null,
/// the child is given a fixed width derived from the stack's width.
/// Otherwise, the child is given unbounded constraints in the non-fixed dimensions.
///
/// Once the child is laid out, the stack positions the child
/// according to the top, right, bottom, and left properties of their
/// [StackParentData]. For example, if the bottom value is 10.0, the
/// bottom edge of the child will be inset 10.0 pixels from the bottom
/// edge of the stack. If the child extends beyond the bounds of the
/// stack, the stack will clip the child's painting to the bounds of
/// the stack.
///
/// See also:
///
/// * [RenderFlow]
class RenderStack extends RenderBox
with ContainerRenderObjectMixin<RenderBox, StackParentData>,
RenderBoxContainerDefaultsMixin<RenderBox, StackParentData> {
/// Creates a stack render object.
///
/// By default, the non-positioned children of the stack are aligned by their
/// top left corners.
RenderStack({
List<RenderBox>? children,
AlignmentGeometry alignment = AlignmentDirectional.topStart,
TextDirection? textDirection,
StackFit fit = StackFit.loose,
Clip clipBehavior = Clip.hardEdge,
}) : _alignment = alignment,
_textDirection = textDirection,
_fit = fit,
_clipBehavior = clipBehavior {
addAll(children);
}
bool _hasVisualOverflow = false;
@override
void setupParentData(RenderBox child) {
if (child.parentData is! StackParentData) {
child.parentData = StackParentData();
}
}
Alignment? _resolvedAlignment;
void _resolve() {
if (_resolvedAlignment != null) {
return;
}
_resolvedAlignment = alignment.resolve(textDirection);
}
void _markNeedResolution() {
_resolvedAlignment = null;
markNeedsLayout();
}
/// How to align the non-positioned or partially-positioned children in the
/// stack.
///
/// The non-positioned children are placed relative to each other such that
/// the points determined by [alignment] are co-located. For example, if the
/// [alignment] is [Alignment.topLeft], then the top left corner of
/// each non-positioned child will be located at the same global coordinate.
///
/// Partially-positioned children, those that do not specify an alignment in a
/// particular axis (e.g. that have neither `top` nor `bottom` set), use the
/// alignment to determine how they should be positioned in that
/// under-specified axis.
///
/// If this is set to an [AlignmentDirectional] object, then [textDirection]
/// must not be null.
AlignmentGeometry get alignment => _alignment;
AlignmentGeometry _alignment;
set alignment(AlignmentGeometry value) {
if (_alignment == value) {
return;
}
_alignment = value;
_markNeedResolution();
}
/// The text direction with which to resolve [alignment].
///
/// This may be changed to null, but only after the [alignment] has been changed
/// to a value that does not depend on the direction.
TextDirection? get textDirection => _textDirection;
TextDirection? _textDirection;
set textDirection(TextDirection? value) {
if (_textDirection == value) {
return;
}
_textDirection = value;
_markNeedResolution();
}
/// How to size the non-positioned children in the stack.
///
/// The constraints passed into the [RenderStack] from its parent are either
/// loosened ([StackFit.loose]) or tightened to their biggest size
/// ([StackFit.expand]).
StackFit get fit => _fit;
StackFit _fit;
set fit(StackFit value) {
if (_fit != value) {
_fit = value;
markNeedsLayout();
}
}
/// {@macro flutter.material.Material.clipBehavior}
///
/// Stacks only clip children whose geometry overflow the stack. A child that
/// paints outside its bounds (e.g. a box with a shadow) will not be clipped,
/// regardless of the value of this property. Similarly, a child that itself
/// has a descendant that overflows the stack will not be clipped, as only the
/// geometry of the stack's direct children are considered.
///
/// To clip children whose geometry does not overflow the stack, consider
/// using a [RenderClipRect] render object.
///
/// Defaults to [Clip.hardEdge].
Clip get clipBehavior => _clipBehavior;
Clip _clipBehavior = Clip.hardEdge;
set clipBehavior(Clip value) {
if (value != _clipBehavior) {
_clipBehavior = value;
markNeedsPaint();
markNeedsSemanticsUpdate();
}
}
/// Helper function for calculating the intrinsics metrics of a Stack.
static double getIntrinsicDimension(RenderBox? firstChild, double Function(RenderBox child) mainChildSizeGetter) {
double extent = 0.0;
RenderBox? child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData! as StackParentData;
if (!childParentData.isPositioned) {
extent = math.max(extent, mainChildSizeGetter(child));
}
assert(child.parentData == childParentData);
child = childParentData.nextSibling;
}
return extent;
}
@override
double computeMinIntrinsicWidth(double height) {
return getIntrinsicDimension(firstChild, (RenderBox child) => child.getMinIntrinsicWidth(height));
}
@override
double computeMaxIntrinsicWidth(double height) {
return getIntrinsicDimension(firstChild, (RenderBox child) => child.getMaxIntrinsicWidth(height));
}
@override
double computeMinIntrinsicHeight(double width) {
return getIntrinsicDimension(firstChild, (RenderBox child) => child.getMinIntrinsicHeight(width));
}
@override
double computeMaxIntrinsicHeight(double width) {
return getIntrinsicDimension(firstChild, (RenderBox child) => child.getMaxIntrinsicHeight(width));
}
@override
double? computeDistanceToActualBaseline(TextBaseline baseline) {
return defaultComputeDistanceToHighestActualBaseline(baseline);
}
/// Lays out the positioned `child` according to `alignment` within a Stack of `size`.
///
/// Returns true when the child has visual overflow.
static bool layoutPositionedChild(RenderBox child, StackParentData childParentData, Size size, Alignment alignment) {
assert(childParentData.isPositioned);
assert(child.parentData == childParentData);
bool hasVisualOverflow = false;
BoxConstraints childConstraints = const BoxConstraints();
if (childParentData.left != null && childParentData.right != null) {
childConstraints = childConstraints.tighten(width: size.width - childParentData.right! - childParentData.left!);
} else if (childParentData.width != null) {
childConstraints = childConstraints.tighten(width: childParentData.width);
}
if (childParentData.top != null && childParentData.bottom != null) {
childConstraints = childConstraints.tighten(height: size.height - childParentData.bottom! - childParentData.top!);
} else if (childParentData.height != null) {
childConstraints = childConstraints.tighten(height: childParentData.height);
}
child.layout(childConstraints, parentUsesSize: true);
final double x;
if (childParentData.left != null) {
x = childParentData.left!;
} else if (childParentData.right != null) {
x = size.width - childParentData.right! - child.size.width;
} else {
x = alignment.alongOffset(size - child.size as Offset).dx;
}
if (x < 0.0 || x + child.size.width > size.width) {
hasVisualOverflow = true;
}
final double y;
if (childParentData.top != null) {
y = childParentData.top!;
} else if (childParentData.bottom != null) {
y = size.height - childParentData.bottom! - child.size.height;
} else {
y = alignment.alongOffset(size - child.size as Offset).dy;
}
if (y < 0.0 || y + child.size.height > size.height) {
hasVisualOverflow = true;
}
childParentData.offset = Offset(x, y);
return hasVisualOverflow;
}
@override
Size computeDryLayout(BoxConstraints constraints) {
return _computeSize(
constraints: constraints,
layoutChild: ChildLayoutHelper.dryLayoutChild,
);
}
Size _computeSize({required BoxConstraints constraints, required ChildLayouter layoutChild}) {
_resolve();
assert(_resolvedAlignment != null);
bool hasNonPositionedChildren = false;
if (childCount == 0) {
return (constraints.biggest.isFinite) ? constraints.biggest : constraints.smallest;
}
double width = constraints.minWidth;
double height = constraints.minHeight;
final BoxConstraints nonPositionedConstraints;
switch (fit) {
case StackFit.loose:
nonPositionedConstraints = constraints.loosen();
case StackFit.expand:
nonPositionedConstraints = BoxConstraints.tight(constraints.biggest);
case StackFit.passthrough:
nonPositionedConstraints = constraints;
}
RenderBox? child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData! as StackParentData;
if (!childParentData.isPositioned) {
hasNonPositionedChildren = true;
final Size childSize = layoutChild(child, nonPositionedConstraints);
width = math.max(width, childSize.width);
height = math.max(height, childSize.height);
}
child = childParentData.nextSibling;
}
final Size size;
if (hasNonPositionedChildren) {
size = Size(width, height);
assert(size.width == constraints.constrainWidth(width));
assert(size.height == constraints.constrainHeight(height));
} else {
size = constraints.biggest;
}
assert(size.isFinite);
return size;
}
@override
void performLayout() {
final BoxConstraints constraints = this.constraints;
_hasVisualOverflow = false;
size = _computeSize(
constraints: constraints,
layoutChild: ChildLayoutHelper.layoutChild,
);
assert(_resolvedAlignment != null);
RenderBox? child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData! as StackParentData;
if (!childParentData.isPositioned) {
childParentData.offset = _resolvedAlignment!.alongOffset(size - child.size as Offset);
} else {
_hasVisualOverflow = layoutPositionedChild(child, childParentData, size, _resolvedAlignment!) || _hasVisualOverflow;
}
assert(child.parentData == childParentData);
child = childParentData.nextSibling;
}
}
@override
bool hitTestChildren(BoxHitTestResult result, { required Offset position }) {
return defaultHitTestChildren(result, position: position);
}
/// Override in subclasses to customize how the stack paints.
///
/// By default, the stack uses [defaultPaint]. This function is called by
/// [paint] after potentially applying a clip to contain visual overflow.
@protected
void paintStack(PaintingContext context, Offset offset) {
defaultPaint(context, offset);
}
@override
void paint(PaintingContext context, Offset offset) {
if (clipBehavior != Clip.none && _hasVisualOverflow) {
_clipRectLayer.layer = context.pushClipRect(
needsCompositing,
offset,
Offset.zero & size,
paintStack,
clipBehavior: clipBehavior,
oldLayer: _clipRectLayer.layer,
);
} else {
_clipRectLayer.layer = null;
paintStack(context, offset);
}
}
final LayerHandle<ClipRectLayer> _clipRectLayer = LayerHandle<ClipRectLayer>();
@override
void dispose() {
_clipRectLayer.layer = null;
super.dispose();
}
@override
Rect? describeApproximatePaintClip(RenderObject child) {
switch (clipBehavior) {
case Clip.none:
return null;
case Clip.hardEdge:
case Clip.antiAlias:
case Clip.antiAliasWithSaveLayer:
return _hasVisualOverflow ? Offset.zero & size : null;
}
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<AlignmentGeometry>('alignment', alignment));
properties.add(EnumProperty<TextDirection>('textDirection', textDirection));
properties.add(EnumProperty<StackFit>('fit', fit));
properties.add(EnumProperty<Clip>('clipBehavior', clipBehavior, defaultValue: Clip.hardEdge));
}
}
/// Implements the same layout algorithm as RenderStack but only paints the child
/// specified by index.
///
/// Although only one child is displayed, the cost of the layout algorithm is
/// still O(N), like an ordinary stack.
class RenderIndexedStack extends RenderStack {
/// Creates a stack render object that paints a single child.
///
/// If the [index] parameter is null, nothing is displayed.
RenderIndexedStack({
super.children,
super.alignment,
super.textDirection,
super.fit,
super.clipBehavior,
int? index = 0,
}) : _index = index;
@override
void visitChildrenForSemantics(RenderObjectVisitor visitor) {
if (index != null && firstChild != null) {
visitor(_childAtIndex());
}
}
/// The index of the child to show, null if nothing is to be displayed.
int? get index => _index;
int? _index;
set index(int? value) {
if (_index != value) {
_index = value;
markNeedsLayout();
}
}
RenderBox _childAtIndex() {
assert(index != null);
RenderBox? child = firstChild;
int i = 0;
while (child != null && i < index!) {
final StackParentData childParentData = child.parentData! as StackParentData;
child = childParentData.nextSibling;
i += 1;
}
assert(i == index);
assert(child != null);
return child!;
}
@override
bool hitTestChildren(BoxHitTestResult result, { required Offset position }) {
if (firstChild == null || index == null) {
return false;
}
final RenderBox child = _childAtIndex();
final StackParentData childParentData = child.parentData! as StackParentData;
return result.addWithPaintOffset(
offset: childParentData.offset,
position: position,
hitTest: (BoxHitTestResult result, Offset transformed) {
assert(transformed == position - childParentData.offset);
return child.hitTest(result, position: transformed);
},
);
}
@override
void paintStack(PaintingContext context, Offset offset) {
if (firstChild == null || index == null) {
return;
}
final RenderBox child = _childAtIndex();
final StackParentData childParentData = child.parentData! as StackParentData;
context.paintChild(child, childParentData.offset + offset);
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(IntProperty('index', index));
}
@override
List<DiagnosticsNode> debugDescribeChildren() {
final List<DiagnosticsNode> children = <DiagnosticsNode>[];
int i = 0;
RenderObject? child = firstChild;
while (child != null) {
children.add(child.toDiagnosticsNode(
name: 'child ${i + 1}',
style: i != index ? DiagnosticsTreeStyle.offstage : null,
));
child = (child.parentData! as StackParentData).nextSibling;
i += 1;
}
return children;
}
}