1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(ianh): These should be on the Set and List classes themselves.
/// Compares two sets for element-by-element equality.
///
/// Returns true if the sets are both null, or if they are both non-null, have
/// the same length, and contain the same members. Returns false otherwise.
/// Order is not compared.
///
/// If the elements are maps, lists, sets, or other collections/composite objects,
/// then the contents of those elements are not compared element by element unless their
/// equality operators ([Object.==]) do so.
/// For checking deep equality, consider using [DeepCollectionEquality] class.
///
/// See also:
///
/// * [listEquals], which does something similar for lists.
/// * [mapEquals], which does something similar for maps.
bool setEquals<T>(Set<T>? a, Set<T>? b) {
if (a == null) {
return b == null;
}
if (b == null || a.length != b.length) {
return false;
}
if (identical(a, b)) {
return true;
}
for (final T value in a) {
if (!b.contains(value)) {
return false;
}
}
return true;
}
/// Compares two lists for element-by-element equality.
///
/// Returns true if the lists are both null, or if they are both non-null, have
/// the same length, and contain the same members in the same order. Returns
/// false otherwise.
///
/// If the elements are maps, lists, sets, or other collections/composite objects,
/// then the contents of those elements are not compared element by element unless their
/// equality operators ([Object.==]) do so.
/// For checking deep equality, consider using [DeepCollectionEquality] class.
///
/// See also:
///
/// * [setEquals], which does something similar for sets.
/// * [mapEquals], which does something similar for maps.
bool listEquals<T>(List<T>? a, List<T>? b) {
if (a == null) {
return b == null;
}
if (b == null || a.length != b.length) {
return false;
}
if (identical(a, b)) {
return true;
}
for (int index = 0; index < a.length; index += 1) {
if (a[index] != b[index]) {
return false;
}
}
return true;
}
/// Compares two maps for element-by-element equality.
///
/// Returns true if the maps are both null, or if they are both non-null, have
/// the same length, and contain the same keys associated with the same values.
/// Returns false otherwise.
///
/// If the elements are maps, lists, sets, or other collections/composite objects,
/// then the contents of those elements are not compared element by element unless their
/// equality operators ([Object.==]) do so.
/// For checking deep equality, consider using [DeepCollectionEquality] class.
///
/// See also:
///
/// * [setEquals], which does something similar for sets.
/// * [listEquals], which does something similar for lists.
bool mapEquals<T, U>(Map<T, U>? a, Map<T, U>? b) {
if (a == null) {
return b == null;
}
if (b == null || a.length != b.length) {
return false;
}
if (identical(a, b)) {
return true;
}
for (final T key in a.keys) {
if (!b.containsKey(key) || b[key] != a[key]) {
return false;
}
}
return true;
}
/// Returns the position of `value` in the `sortedList`, if it exists.
///
/// Returns `-1` if the `value` is not in the list. Requires the list items
/// to implement [Comparable] and the `sortedList` to already be ordered.
int binarySearch<T extends Comparable<Object>>(List<T> sortedList, T value) {
int min = 0;
int max = sortedList.length;
while (min < max) {
final int mid = min + ((max - min) >> 1);
final T element = sortedList[mid];
final int comp = element.compareTo(value);
if (comp == 0) {
return mid;
}
if (comp < 0) {
min = mid + 1;
} else {
max = mid;
}
}
return -1;
}
/// Limit below which merge sort defaults to insertion sort.
const int _kMergeSortLimit = 32;
/// Sorts a list between `start` (inclusive) and `end` (exclusive) using the
/// merge sort algorithm.
///
/// If `compare` is omitted, this defaults to calling [Comparable.compareTo] on
/// the objects. If any object is not [Comparable], this throws a [TypeError]
/// (The stack trace may call it `_CastError` or `_TypeError`, but to catch it,
/// use [TypeError]).
///
/// Merge-sorting works by splitting the job into two parts, sorting each
/// recursively, and then merging the two sorted parts.
///
/// This takes on the order of `n * log(n)` comparisons and moves to sort `n`
/// elements, but requires extra space of about the same size as the list being
/// sorted.
///
/// This merge sort is stable: Equal elements end up in the same order as they
/// started in.
///
/// For small lists (less than 32 elements), [mergeSort] automatically uses an
/// insertion sort instead, as that is more efficient for small lists. The
/// insertion sort is also stable.
void mergeSort<T>(
List<T> list, {
int start = 0,
int? end,
int Function(T, T)? compare,
}) {
end ??= list.length;
compare ??= _defaultCompare<T>();
final int length = end - start;
if (length < 2) {
return;
}
if (length < _kMergeSortLimit) {
_insertionSort<T>(list, compare: compare, start: start, end: end);
return;
}
// Special case the first split instead of directly calling _mergeSort,
// because the _mergeSort requires its target to be different from its source,
// and it requires extra space of the same size as the list to sort. This
// split allows us to have only half as much extra space, and it ends up in
// the original place.
final int middle = start + ((end - start) >> 1);
final int firstLength = middle - start;
final int secondLength = end - middle;
// secondLength is always the same as firstLength, or one greater.
final List<T> scratchSpace = List<T>.filled(secondLength, list[start]);
_mergeSort<T>(list, compare, middle, end, scratchSpace, 0);
final int firstTarget = end - firstLength;
_mergeSort<T>(list, compare, start, middle, list, firstTarget);
_merge<T>(compare, list, firstTarget, end, scratchSpace, 0, secondLength, list, start);
}
/// Returns a [Comparator] that asserts that its first argument is comparable.
Comparator<T> _defaultCompare<T>() {
// If we specify Comparable<T> here, it fails if the type is an int, because
// int isn't a subtype of comparable. Leaving out the type implicitly converts
// it to a num, which is a comparable.
return (T value1, T value2) => (value1 as Comparable<dynamic>).compareTo(value2);
}
/// Sort a list between `start` (inclusive) and `end` (exclusive) using
/// insertion sort.
///
/// If `compare` is omitted, this defaults to calling [Comparable.compareTo] on
/// the objects. If any object is not [Comparable], this throws a [TypeError]
/// (The stack trace may call it `_CastError` or `_TypeError`, but to catch it,
/// use [TypeError]).
///
/// Insertion sort is a simple sorting algorithm. For `n` elements it does on
/// the order of `n * log(n)` comparisons but up to `n` squared moves. The
/// sorting is performed in-place, without using extra memory.
///
/// For short lists the many moves have less impact than the simple algorithm,
/// and it is often the favored sorting algorithm for short lists.
///
/// This insertion sort is stable: Equal elements end up in the same order as
/// they started in.
void _insertionSort<T>(
List<T> list, {
int Function(T, T)? compare,
int start = 0,
int? end,
}) {
// If the same method could have both positional and named optional
// parameters, this should be (list, [start, end], {compare}).
compare ??= _defaultCompare<T>();
end ??= list.length;
for (int pos = start + 1; pos < end; pos++) {
int min = start;
int max = pos;
final T element = list[pos];
while (min < max) {
final int mid = min + ((max - min) >> 1);
final int comparison = compare(element, list[mid]);
if (comparison < 0) {
max = mid;
} else {
min = mid + 1;
}
}
list.setRange(min + 1, pos + 1, list, min);
list[min] = element;
}
}
/// Performs an insertion sort into a potentially different list than the one
/// containing the original values.
///
/// It will work in-place as well.
void _movingInsertionSort<T>(
List<T> list,
int Function(T, T) compare,
int start,
int end,
List<T> target,
int targetOffset,
) {
final int length = end - start;
if (length == 0) {
return;
}
target[targetOffset] = list[start];
for (int i = 1; i < length; i++) {
final T element = list[start + i];
int min = targetOffset;
int max = targetOffset + i;
while (min < max) {
final int mid = min + ((max - min) >> 1);
if (compare(element, target[mid]) < 0) {
max = mid;
} else {
min = mid + 1;
}
}
target.setRange(min + 1, targetOffset + i + 1, target, min);
target[min] = element;
}
}
/// Sorts `list` from `start` to `end` into `target` at `targetOffset`.
///
/// The `target` list must be able to contain the range from `start` to `end`
/// after `targetOffset`.
///
/// Allows target to be the same list as `list`, as long as it's not overlapping
/// the `start..end` range.
void _mergeSort<T>(
List<T> list,
int Function(T, T) compare,
int start,
int end,
List<T> target,
int targetOffset,
) {
final int length = end - start;
if (length < _kMergeSortLimit) {
_movingInsertionSort<T>(list, compare, start, end, target, targetOffset);
return;
}
final int middle = start + (length >> 1);
final int firstLength = middle - start;
final int secondLength = end - middle;
// Here secondLength >= firstLength (differs by at most one).
final int targetMiddle = targetOffset + firstLength;
// Sort the second half into the end of the target area.
_mergeSort<T>(list, compare, middle, end, target, targetMiddle);
// Sort the first half into the end of the source area.
_mergeSort<T>(list, compare, start, middle, list, middle);
// Merge the two parts into the target area.
_merge<T>(
compare,
list,
middle,
middle + firstLength,
target,
targetMiddle,
targetMiddle + secondLength,
target,
targetOffset,
);
}
/// Merges two lists into a target list.
///
/// One of the input lists may be positioned at the end of the target list.
///
/// For equal object, elements from `firstList` are always preferred. This
/// allows the merge to be stable if the first list contains elements that
/// started out earlier than the ones in `secondList`.
void _merge<T>(
int Function(T, T) compare,
List<T> firstList,
int firstStart,
int firstEnd,
List<T> secondList,
int secondStart,
int secondEnd,
List<T> target,
int targetOffset,
) {
// No empty lists reaches here.
assert(firstStart < firstEnd);
assert(secondStart < secondEnd);
int cursor1 = firstStart;
int cursor2 = secondStart;
T firstElement = firstList[cursor1++];
T secondElement = secondList[cursor2++];
while (true) {
if (compare(firstElement, secondElement) <= 0) {
target[targetOffset++] = firstElement;
if (cursor1 == firstEnd) {
// Flushing second list after loop.
break;
}
firstElement = firstList[cursor1++];
} else {
target[targetOffset++] = secondElement;
if (cursor2 != secondEnd) {
secondElement = secondList[cursor2++];
continue;
}
// Second list empties first. Flushing first list here.
target[targetOffset++] = firstElement;
target.setRange(targetOffset, targetOffset + (firstEnd - cursor1), firstList, cursor1);
return;
}
}
// First list empties first. Reached by break above.
target[targetOffset++] = secondElement;
target.setRange(targetOffset, targetOffset + (secondEnd - cursor2), secondList, cursor2);
}