binding.dart 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


import 'dart:async';
import 'dart:collection';
import 'dart:ui' as ui show PointerDataPacket;

import 'package:flutter/foundation.dart';
import 'package:flutter/scheduler.dart';

import 'arena.dart';
import 'converter.dart';
import 'debug.dart';
import 'events.dart';
import 'hit_test.dart';
import 'pointer_router.dart';
import 'pointer_signal_resolver.dart';
import 'resampler.dart';

export 'dart:ui' show Offset;

export 'package:flutter/foundation.dart' show DiagnosticsNode, InformationCollector;

export 'arena.dart' show GestureArenaManager;
export 'events.dart' show PointerEvent;
export 'hit_test.dart' show HitTestEntry, HitTestResult, HitTestTarget;
export 'pointer_router.dart' show PointerRouter;
export 'pointer_signal_resolver.dart' show PointerSignalResolver;

typedef _HandleSampleTimeChangedCallback = void Function();

/// Class that implements clock used for sampling.
class SamplingClock {
  /// Returns current time.
  DateTime now() => DateTime.now();

  /// Returns a new stopwatch that uses the current time as reported by `this`.
  Stopwatch stopwatch() => Stopwatch();
}

// Class that handles resampling of touch events for multiple pointer
// devices.
//
// The `samplingInterval` is used to determine the approximate next
// time for resampling.
// SchedulerBinding's `currentSystemFrameTimeStamp` is used to determine
// sample time.
class _Resampler {
  _Resampler(this._handlePointerEvent, this._handleSampleTimeChanged, this._samplingInterval);

  // Resamplers used to filter incoming pointer events.
  final Map<int, PointerEventResampler> _resamplers = <int, PointerEventResampler>{};

  // Flag to track if a frame callback has been scheduled.
  bool _frameCallbackScheduled = false;

  // Last frame time for resampling.
  Duration _frameTime = Duration.zero;

  // Time since `_frameTime` was updated.
  Stopwatch _frameTimeAge = Stopwatch();

  // Last sample time and time stamp of last event.
  //
  // Only used for debugPrint of resampling margin.
  Duration _lastSampleTime = Duration.zero;
  Duration _lastEventTime = Duration.zero;

  // Callback used to handle pointer events.
  final HandleEventCallback _handlePointerEvent;

  // Callback used to handle sample time changes.
  final _HandleSampleTimeChangedCallback _handleSampleTimeChanged;

  // Interval used for sampling.
  final Duration _samplingInterval;

  // Timer used to schedule resampling.
  Timer? _timer;

  // Add `event` for resampling or dispatch it directly if
  // not a touch event.
  void addOrDispatch(PointerEvent event) {
    final SchedulerBinding scheduler = SchedulerBinding.instance;
    assert(scheduler != null);
    // Add touch event to resampler or dispatch pointer event directly.
    if (event.kind == PointerDeviceKind.touch) {
      // Save last event time for debugPrint of resampling margin.
      _lastEventTime = event.timeStamp;

      final PointerEventResampler resampler = _resamplers.putIfAbsent(
        event.device,
        () => PointerEventResampler(),
      );
      resampler.addEvent(event);
    } else {
      _handlePointerEvent(event);
    }
  }

  // Sample and dispatch events.
  //
  // The `samplingOffset` is relative to the current frame time, which
  // can be in the past when we're not actively resampling.
  //
  // The `samplingClock` is the clock used to determine frame time age.
  void sample(Duration samplingOffset, SamplingClock clock) {
    final SchedulerBinding scheduler = SchedulerBinding.instance;
    assert(scheduler != null);

    // Initialize `_frameTime` if needed. This will be used for periodic
    // sampling when frame callbacks are not received.
    if (_frameTime == Duration.zero) {
      _frameTime = Duration(milliseconds: clock.now().millisecondsSinceEpoch);
      _frameTimeAge = clock.stopwatch()..start();
    }

    // Schedule periodic resampling if `_timer` is not already active.
    if (_timer?.isActive != true) {
      _timer = Timer.periodic(_samplingInterval, (_) => _onSampleTimeChanged());
    }

    // Calculate the effective frame time by taking the number
    // of sampling intervals since last time `_frameTime` was
    // updated into account. This allows us to advance sample
    // time without having to receive frame callbacks.
    final int samplingIntervalUs = _samplingInterval.inMicroseconds;
    final int elapsedIntervals = _frameTimeAge.elapsedMicroseconds ~/ samplingIntervalUs;
    final int elapsedUs = elapsedIntervals * samplingIntervalUs;
    final Duration frameTime = _frameTime + Duration(microseconds: elapsedUs);

    // Determine sample time by adding the offset to the current
    // frame time. This is expected to be in the past and not
    // result in any dispatched events unless we're actively
    // resampling events.
    final Duration sampleTime = frameTime + samplingOffset;

    // Determine next sample time by adding the sampling interval
    // to the current sample time.
    final Duration nextSampleTime = sampleTime + _samplingInterval;

    // Iterate over active resamplers and sample pointer events for
    // current sample time.
    for (final PointerEventResampler resampler in _resamplers.values) {
      resampler.sample(sampleTime, nextSampleTime, _handlePointerEvent);
    }

    // Remove inactive resamplers.
    _resamplers.removeWhere((int key, PointerEventResampler resampler) {
      return !resampler.hasPendingEvents && !resampler.isDown;
    });

    // Save last sample time for debugPrint of resampling margin.
    _lastSampleTime = sampleTime;

    // Early out if another call to `sample` isn't needed.
    if (_resamplers.isEmpty) {
      _timer!.cancel();
      return;
    }

    // Schedule a frame callback if another call to `sample` is needed.
    if (!_frameCallbackScheduled) {
      _frameCallbackScheduled = true;
      // Add a post frame callback as this avoids producing unnecessary
      // frames but ensures that sampling phase is adjusted to frame
      // time when frames are produced.
      scheduler.addPostFrameCallback((_) {
        _frameCallbackScheduled = false;
        // We use `currentSystemFrameTimeStamp` here as it's critical that
        // sample time is in the same clock as the event time stamps, and
        // never adjusted or scaled like `currentFrameTimeStamp`.
        _frameTime = scheduler.currentSystemFrameTimeStamp;
        _frameTimeAge.reset();
        // Reset timer to match phase of latest frame callback.
        _timer?.cancel();
        _timer = Timer.periodic(_samplingInterval, (_) => _onSampleTimeChanged());
        // Trigger an immediate sample time change.
        _onSampleTimeChanged();
      });
    }
  }

  // Stop all resampling and dispatched any queued events.
  void stop() {
    for (final PointerEventResampler resampler in _resamplers.values) {
      resampler.stop(_handlePointerEvent);
    }
    _resamplers.clear();
    _frameTime = Duration.zero;
    _timer?.cancel();
  }

  void _onSampleTimeChanged() {
    assert(() {
      if (debugPrintResamplingMargin) {
        final Duration resamplingMargin = _lastEventTime - _lastSampleTime;
        debugPrint('$resamplingMargin');
      }
      return true;
    }());
    _handleSampleTimeChanged();
  }
}

// The default sampling offset.
//
// Sampling offset is relative to presentation time. If we produce frames
// 16.667 ms before presentation and input rate is ~60hz, worst case latency
// is 33.334 ms. This however assumes zero latency from the input driver.
// 4.666 ms margin is added for this.
const Duration _defaultSamplingOffset = Duration(milliseconds: -38);

// The sampling interval.
//
// Sampling interval is used to determine the approximate time for subsequent
// sampling. This is used to sample events when frame callbacks are not
// being received and decide if early processing of up and removed events
// is appropriate. 16667 us for 60hz sampling interval.
const Duration _samplingInterval = Duration(microseconds: 16667);

/// A binding for the gesture subsystem.
///
/// ## Lifecycle of pointer events and the gesture arena
///
/// ### [PointerDownEvent]
///
/// When a [PointerDownEvent] is received by the [GestureBinding] (from
/// [dart:ui.PlatformDispatcher.onPointerDataPacket], as interpreted by the
/// [PointerEventConverter]), a [hitTest] is performed to determine which
/// [HitTestTarget] nodes are affected. (Other bindings are expected to
/// implement [hitTest] to defer to [HitTestable] objects. For example, the
/// rendering layer defers to the [RenderView] and the rest of the render object
/// hierarchy.)
///
/// The affected nodes then are given the event to handle ([dispatchEvent] calls
/// [HitTestTarget.handleEvent] for each affected node). If any have relevant
/// [GestureRecognizer]s, they provide the event to them using
/// [GestureRecognizer.addPointer]. This typically causes the recognizer to
/// register with the [PointerRouter] to receive notifications regarding the
/// pointer in question.
///
/// Once the hit test and dispatching logic is complete, the event is then
/// passed to the aforementioned [PointerRouter], which passes it to any objects
/// that have registered interest in that event.
///
/// Finally, the [gestureArena] is closed for the given pointer
/// ([GestureArenaManager.close]), which begins the process of selecting a
/// gesture to win that pointer.
///
/// ### Other events
///
/// A pointer that is [PointerEvent.down] may send further events, such as
/// [PointerMoveEvent], [PointerUpEvent], or [PointerCancelEvent]. These are
/// sent to the same [HitTestTarget] nodes as were found when the
/// [PointerDownEvent] was received (even if they have since been disposed; it is
/// the responsibility of those objects to be aware of that possibility).
///
/// Then, the events are routed to any still-registered entrants in the
/// [PointerRouter]'s table for that pointer.
///
/// When a [PointerUpEvent] is received, the [GestureArenaManager.sweep] method
/// is invoked to force the gesture arena logic to terminate if necessary.
mixin GestureBinding on BindingBase implements HitTestable, HitTestDispatcher, HitTestTarget {
  @override
  void initInstances() {
    super.initInstances();
    _instance = this;
    platformDispatcher.onPointerDataPacket = _handlePointerDataPacket;
  }

  /// The singleton instance of this object.
  ///
  /// Provides access to the features exposed by this mixin. The binding must
  /// be initialized before using this getter; this is typically done by calling
  /// [runApp] or [WidgetsFlutterBinding.ensureInitialized].
  static GestureBinding get instance => BindingBase.checkInstance(_instance);
  static GestureBinding? _instance;

  @override
  void unlocked() {
    super.unlocked();
    _flushPointerEventQueue();
  }

  final Queue<PointerEvent> _pendingPointerEvents = Queue<PointerEvent>();

  void _handlePointerDataPacket(ui.PointerDataPacket packet) {
    // We convert pointer data to logical pixels so that e.g. the touch slop can be
    // defined in a device-independent manner.
    _pendingPointerEvents.addAll(PointerEventConverter.expand(packet.data, window.devicePixelRatio));
    if (!locked) {
      _flushPointerEventQueue();
    }
  }

  /// Dispatch a [PointerCancelEvent] for the given pointer soon.
  ///
  /// The pointer event will be dispatched before the next pointer event and
  /// before the end of the microtask but not within this function call.
  void cancelPointer(int pointer) {
    if (_pendingPointerEvents.isEmpty && !locked) {
      scheduleMicrotask(_flushPointerEventQueue);
    }
    _pendingPointerEvents.addFirst(PointerCancelEvent(pointer: pointer));
  }

  void _flushPointerEventQueue() {
    assert(!locked);

    while (_pendingPointerEvents.isNotEmpty) {
      handlePointerEvent(_pendingPointerEvents.removeFirst());
    }
  }

  /// A router that routes all pointer events received from the engine.
  final PointerRouter pointerRouter = PointerRouter();

  /// The gesture arenas used for disambiguating the meaning of sequences of
  /// pointer events.
  final GestureArenaManager gestureArena = GestureArenaManager();

  /// The resolver used for determining which widget handles a
  /// [PointerSignalEvent].
  final PointerSignalResolver pointerSignalResolver = PointerSignalResolver();

  /// State for all pointers which are currently down.
  ///
  /// The state of hovering pointers is not tracked because that would require
  /// hit-testing on every frame.
  final Map<int, HitTestResult> _hitTests = <int, HitTestResult>{};

  /// Dispatch an event to the targets found by a hit test on its position.
  ///
  /// This method sends the given event to [dispatchEvent] based on event types:
  ///
  ///  * [PointerDownEvent]s and [PointerSignalEvent]s are dispatched to the
  ///    result of a new [hitTest].
  ///  * [PointerUpEvent]s and [PointerMoveEvent]s are dispatched to the result of hit test of the
  ///    preceding [PointerDownEvent]s.
  ///  * [PointerHoverEvent]s, [PointerAddedEvent]s, and [PointerRemovedEvent]s
  ///    are dispatched without a hit test result.
  void handlePointerEvent(PointerEvent event) {
    assert(!locked);

    if (resamplingEnabled) {
      _resampler.addOrDispatch(event);
      _resampler.sample(samplingOffset, _samplingClock);
      return;
    }

    // Stop resampler if resampling is not enabled. This is a no-op if
    // resampling was never enabled.
    _resampler.stop();
    _handlePointerEventImmediately(event);
  }

  void _handlePointerEventImmediately(PointerEvent event) {
    HitTestResult? hitTestResult;
    if (event is PointerDownEvent || event is PointerSignalEvent || event is PointerHoverEvent || event is PointerPanZoomStartEvent) {
      assert(!_hitTests.containsKey(event.pointer), 'Pointer of $event unexpectedly has a HitTestResult associated with it.');
      hitTestResult = HitTestResult();
      hitTest(hitTestResult, event.position);
      if (event is PointerDownEvent || event is PointerPanZoomStartEvent) {
        _hitTests[event.pointer] = hitTestResult;
      }
      assert(() {
        if (debugPrintHitTestResults) {
          debugPrint('$event: $hitTestResult');
        }
        return true;
      }());
    } else if (event is PointerUpEvent || event is PointerCancelEvent || event is PointerPanZoomEndEvent) {
      hitTestResult = _hitTests.remove(event.pointer);
    } else if (event.down || event is PointerPanZoomUpdateEvent) {
      // Because events that occur with the pointer down (like
      // [PointerMoveEvent]s) should be dispatched to the same place that their
      // initial PointerDownEvent was, we want to re-use the path we found when
      // the pointer went down, rather than do hit detection each time we get
      // such an event.
      hitTestResult = _hitTests[event.pointer];
    }
    assert(() {
      if (debugPrintMouseHoverEvents && event is PointerHoverEvent) {
        debugPrint('$event');
      }
      return true;
    }());
    if (hitTestResult != null ||
        event is PointerAddedEvent ||
        event is PointerRemovedEvent) {
      assert(event.position != null);
      dispatchEvent(event, hitTestResult);
    }
  }

  /// Determine which [HitTestTarget] objects are located at a given position.
  @override // from HitTestable
  void hitTest(HitTestResult result, Offset position) {
    result.add(HitTestEntry(this));
  }

  /// Dispatch an event to [pointerRouter] and the path of a hit test result.
  ///
  /// The `event` is routed to [pointerRouter]. If the `hitTestResult` is not
  /// null, the event is also sent to every [HitTestTarget] in the entries of the
  /// given [HitTestResult]. Any exceptions from the handlers are caught.
  ///
  /// The `hitTestResult` argument may only be null for [PointerAddedEvent]s or
  /// [PointerRemovedEvent]s.
  @override // from HitTestDispatcher
  @pragma('vm:notify-debugger-on-exception')
  void dispatchEvent(PointerEvent event, HitTestResult? hitTestResult) {
    assert(!locked);
    // No hit test information implies that this is a [PointerAddedEvent] or
    // [PointerRemovedEvent]. These events are specially routed here; other
    // events will be routed through the `handleEvent` below.
    if (hitTestResult == null) {
      assert(event is PointerAddedEvent || event is PointerRemovedEvent);
      try {
        pointerRouter.route(event);
      } catch (exception, stack) {
        FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(
          exception: exception,
          stack: stack,
          library: 'gesture library',
          context: ErrorDescription('while dispatching a non-hit-tested pointer event'),
          event: event,
          informationCollector: () => <DiagnosticsNode>[
            DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty),
          ],
        ));
      }
      return;
    }
    for (final HitTestEntry entry in hitTestResult.path) {
      try {
        entry.target.handleEvent(event.transformed(entry.transform), entry);
      } catch (exception, stack) {
        FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(
          exception: exception,
          stack: stack,
          library: 'gesture library',
          context: ErrorDescription('while dispatching a pointer event'),
          event: event,
          hitTestEntry: entry,
          informationCollector: () => <DiagnosticsNode>[
            DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty),
            DiagnosticsProperty<HitTestTarget>('Target', entry.target, style: DiagnosticsTreeStyle.errorProperty),
          ],
        ));
      }
    }
  }

  @override // from HitTestTarget
  void handleEvent(PointerEvent event, HitTestEntry entry) {
    pointerRouter.route(event);
    if (event is PointerDownEvent || event is PointerPanZoomStartEvent) {
      gestureArena.close(event.pointer);
    } else if (event is PointerUpEvent || event is PointerPanZoomEndEvent) {
      gestureArena.sweep(event.pointer);
    } else if (event is PointerSignalEvent) {
      pointerSignalResolver.resolve(event);
    }
  }

  /// Reset states of [GestureBinding].
  ///
  /// This clears the hit test records.
  ///
  /// This is typically called between tests.
  @protected
  void resetGestureBinding() {
    _hitTests.clear();
  }

  /// Overrides the sampling clock for debugging and testing.
  ///
  /// This value is ignored in non-debug builds.
  @protected
  SamplingClock? get debugSamplingClock => null;

  void _handleSampleTimeChanged() {
    if (!locked) {
      if (resamplingEnabled) {
        _resampler.sample(samplingOffset, _samplingClock);
      }
      else {
        _resampler.stop();
      }
    }
  }

  SamplingClock get _samplingClock {
    SamplingClock value = SamplingClock();
    assert(() {
      final SamplingClock? debugValue = debugSamplingClock;
      if (debugValue != null) {
        value = debugValue;
      }
      return true;
    }());
    return value;
  }

  // Resampler used to filter incoming pointer events when resampling
  // is enabled.
  late final _Resampler _resampler = _Resampler(
    _handlePointerEventImmediately,
    _handleSampleTimeChanged,
    _samplingInterval,
  );

  /// Enable pointer event resampling for touch devices by setting
  /// this to true.
  ///
  /// Resampling results in smoother touch event processing at the
  /// cost of some added latency. Devices with low frequency sensors
  /// or when the frequency is not a multiple of the display frequency
  /// (e.g., 120Hz input and 90Hz display) benefit from this.
  ///
  /// This is typically set during application initialization but
  /// can be adjusted dynamically in case the application only
  /// wants resampling for some period of time.
  bool resamplingEnabled = false;

  /// Offset relative to current frame time that should be used for
  /// resampling. The [samplingOffset] is expected to be negative.
  /// Non-negative [samplingOffset] is allowed but will effectively
  /// disable resampling.
  Duration samplingOffset = _defaultSamplingOffset;
}

/// Variant of [FlutterErrorDetails] with extra fields for the gesture
/// library's binding's pointer event dispatcher ([GestureBinding.dispatchEvent]).
class FlutterErrorDetailsForPointerEventDispatcher extends FlutterErrorDetails {
  /// Creates a [FlutterErrorDetailsForPointerEventDispatcher] object with the given
  /// arguments setting the object's properties.
  ///
  /// The gesture library calls this constructor when catching an exception
  /// that will subsequently be reported using [FlutterError.onError].
  const FlutterErrorDetailsForPointerEventDispatcher({
    required super.exception,
    super.stack,
    super.library,
    super.context,
    this.event,
    this.hitTestEntry,
    super.informationCollector,
    super.silent,
  });

  /// The pointer event that was being routed when the exception was raised.
  final PointerEvent? event;

  /// The hit test result entry for the object whose handleEvent method threw
  /// the exception. May be null if no hit test entry is associated with the
  /// event (e.g. [PointerHoverEvent]s, [PointerAddedEvent]s, and
  /// [PointerRemovedEvent]s).
  ///
  /// The target object itself is given by the [HitTestEntry.target] property of
  /// the hitTestEntry object.
  final HitTestEntry? hitTestEntry;
}