scroll_simulation.dart 8.35 KB
Newer Older
Ian Hickson's avatar
Ian Hickson committed
1
// Copyright 2014 The Flutter Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
import 'dart:math' as math;

7 8 9
import 'package:flutter/foundation.dart';
import 'package:flutter/physics.dart';

10 11 12 13 14
/// An implementation of scroll physics that matches iOS.
///
/// See also:
///
///  * [ClampingScrollSimulation], which implements Android scroll physics.
15
class BouncingScrollSimulation extends Simulation {
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
  /// Creates a simulation group for scrolling on iOS, with the given
  /// parameters.
  ///
  /// The position and velocity arguments must use the same units as will be
  /// expected from the [x] and [dx] methods respectively (typically logical
  /// pixels and logical pixels per second respectively).
  ///
  /// The leading and trailing extents must use the unit of length, the same
  /// unit as used for the position argument and as expected from the [x]
  /// method (typically logical pixels).
  ///
  /// The units used with the provided [SpringDescription] must similarly be
  /// consistent with the other arguments. A default set of constants is used
  /// for the `spring` description if it is omitted; these defaults assume
  /// that the unit of length is the logical pixel.
  BouncingScrollSimulation({
32 33 34 35 36
    required double position,
    required double velocity,
    required this.leadingExtent,
    required this.trailingExtent,
    required this.spring,
37
    Tolerance tolerance = Tolerance.defaultTolerance,
38 39 40 41 42 43 44
  }) : assert(position != null),
       assert(velocity != null),
       assert(leadingExtent != null),
       assert(trailingExtent != null),
       assert(leadingExtent <= trailingExtent),
       assert(spring != null),
       super(tolerance: tolerance) {
45 46
    if (position < leadingExtent) {
      _springSimulation = _underscrollSimulation(position, velocity);
47
      _springTime = double.negativeInfinity;
48 49
    } else if (position > trailingExtent) {
      _springSimulation = _overscrollSimulation(position, velocity);
50
      _springTime = double.negativeInfinity;
51
    } else {
52 53
      // Taken from UIScrollView.decelerationRate (.normal = 0.998)
      // 0.998^1000 = ~0.135
54
      _frictionSimulation = FrictionSimulation(0.135, position, velocity);
55 56 57
      final double finalX = _frictionSimulation.finalX;
      if (velocity > 0.0 && finalX > trailingExtent) {
        _springTime = _frictionSimulation.timeAtX(trailingExtent);
58 59 60 61
        _springSimulation = _overscrollSimulation(
          trailingExtent,
          math.min(_frictionSimulation.dx(_springTime), maxSpringTransferVelocity),
        );
62 63 64
        assert(_springTime.isFinite);
      } else if (velocity < 0.0 && finalX < leadingExtent) {
        _springTime = _frictionSimulation.timeAtX(leadingExtent);
65 66 67 68
        _springSimulation = _underscrollSimulation(
          leadingExtent,
          math.min(_frictionSimulation.dx(_springTime), maxSpringTransferVelocity),
        );
69 70
        assert(_springTime.isFinite);
      } else {
71
        _springTime = double.infinity;
72 73 74
      }
    }
    assert(_springTime != null);
75
  }
76

77
  /// The maximum velocity that can be transferred from the inertia of a ballistic
78 79 80
  /// scroll into overscroll.
  static const double maxSpringTransferVelocity = 5000.0;

81 82 83 84 85 86 87
  /// When [x] falls below this value the simulation switches from an internal friction
  /// model to a spring model which causes [x] to "spring" back to [leadingExtent].
  final double leadingExtent;

  /// When [x] exceeds this value the simulation switches from an internal friction
  /// model to a spring model which causes [x] to "spring" back to [trailingExtent].
  final double trailingExtent;
88

nt4f04uNd's avatar
nt4f04uNd committed
89
  /// The spring used to return [x] to either [leadingExtent] or [trailingExtent].
90 91
  final SpringDescription spring;

92 93 94
  late FrictionSimulation _frictionSimulation;
  late Simulation _springSimulation;
  late double _springTime;
95 96 97
  double _timeOffset = 0.0;

  Simulation _underscrollSimulation(double x, double dx) {
98
    return ScrollSpringSimulation(spring, x, leadingExtent, dx);
99 100 101
  }

  Simulation _overscrollSimulation(double x, double dx) {
102
    return ScrollSpringSimulation(spring, x, trailingExtent, dx);
103 104 105
  }

  Simulation _simulation(double time) {
106
    final Simulation simulation;
107
    if (time > _springTime) {
108 109 110 111 112 113 114 115
      _timeOffset = _springTime.isFinite ? _springTime : 0.0;
      simulation = _springSimulation;
    } else {
      _timeOffset = 0.0;
      simulation = _frictionSimulation;
    }
    return simulation..tolerance = tolerance;
  }
116 117

  @override
118
  double x(double time) => _simulation(time).x(time - _timeOffset);
119 120

  @override
121
  double dx(double time) => _simulation(time).dx(time - _timeOffset);
122 123

  @override
124
  bool isDone(double time) => _simulation(time).isDone(time - _timeOffset);
125 126 127

  @override
  String toString() {
128
    return '${objectRuntimeType(this, 'BouncingScrollSimulation')}(leadingExtent: $leadingExtent, trailingExtent: $trailingExtent)';
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  }
}

/// An implementation of scroll physics that matches Android.
///
/// See also:
///
///  * [BouncingScrollSimulation], which implements iOS scroll physics.
//
// This class is based on Scroller.java from Android:
//   https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/widget
//
// The "See..." comments below refer to Scroller methods and values. Some
// simplifications have been made.
class ClampingScrollSimulation extends Simulation {
  /// Creates a scroll physics simulation that matches Android scrolling.
  ClampingScrollSimulation({
146 147
    required this.position,
    required this.velocity,
148 149
    this.friction = 0.015,
    Tolerance tolerance = Tolerance.defaultTolerance,
150 151 152 153
  }) : assert(_flingVelocityPenetration(0.0) == _initialVelocityPenetration),
       super(tolerance: tolerance) {
    _duration = _flingDuration(velocity);
    _distance = (velocity * _duration / _initialVelocityPenetration).abs();
154 155
  }

156
  /// The position of the particle at the beginning of the simulation.
157
  final double position;
158 159 160

  /// The velocity at which the particle is traveling at the beginning of the
  /// simulation.
161
  final double velocity;
162 163 164 165

  /// The amount of friction the particle experiences as it travels.
  ///
  /// The more friction the particle experiences, the sooner it stops.
166 167
  final double friction;

168
  late double _duration;
169
  late double _distance;
170

171
  // See DECELERATION_RATE.
172
  static final double _kDecelerationRate = math.log(0.78) / math.log(0.9);
173 174

  // See computeDeceleration().
175
  static double _decelerationForFriction(double friction) {
176
    return friction * 61774.04968;
177
  }
178

179 180 181 182 183 184 185 186 187
  // See getSplineFlingDuration(). Returns a value in seconds.
  double _flingDuration(double velocity) {
    // See mPhysicalCoeff
    final double scaledFriction = friction * _decelerationForFriction(0.84);

    // See getSplineDeceleration().
    final double deceleration = math.log(0.35 * velocity.abs() / scaledFriction);

    return math.exp(deceleration / (_kDecelerationRate - 1.0));
188 189
  }

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  // Based on a cubic curve fit to the Scroller.computeScrollOffset() values
  // produced for an initial velocity of 4000. The value of Scroller.getDuration()
  // and Scroller.getFinalY() were 686ms and 961 pixels respectively.
  //
  // Algebra courtesy of Wolfram Alpha.
  //
  // f(x) = scrollOffset, x is time in milliseconds
  // f(x) = 3.60882×10^-6 x^3 - 0.00668009 x^2 + 4.29427 x - 3.15307
  // f(x) = 3.60882×10^-6 x^3 - 0.00668009 x^2 + 4.29427 x, so f(0) is 0
  // f(686ms) = 961 pixels
  // Scale to f(0 <= t <= 1.0), x = t * 686
  // f(t) = 1165.03 t^3 - 3143.62 t^2 + 2945.87 t
  // Scale f(t) so that 0.0 <= f(t) <= 1.0
  // f(t) = (1165.03 t^3 - 3143.62 t^2 + 2945.87 t) / 961.0
  //      = 1.2 t^3 - 3.27 t^2 + 3.065 t
  static const double _initialVelocityPenetration = 3.065;
  static double _flingDistancePenetration(double t) {
    return (1.2 * t * t * t) - (3.27 * t * t) + (_initialVelocityPenetration * t);
208 209
  }

210 211 212
  // The derivative of the _flingDistancePenetration() function.
  static double _flingVelocityPenetration(double t) {
    return (3.6 * t * t) - (6.54 * t) + _initialVelocityPenetration;
213 214 215 216
  }

  @override
  double x(double time) {
217 218
    final double t = (time / _duration).clamp(0.0, 1.0);
    return position + _distance * _flingDistancePenetration(t) * velocity.sign;
219 220 221 222
  }

  @override
  double dx(double time) {
223 224
    final double t = (time / _duration).clamp(0.0, 1.0);
    return _distance * _flingVelocityPenetration(t) * velocity.sign / _duration;
225 226 227 228
  }

  @override
  bool isDone(double time) {
229
    return time >= _duration;
230
  }
231
}