alignment.dart 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

import 'dart:ui' as ui show lerpDouble;

import 'package:flutter/foundation.dart';

import 'basic_types.dart';

/// Base class for [Alignment] that allows for text-direction aware
/// resolution.
///
/// A property or argument of this type accepts classes created either with [new
/// Alignment] and its variants, or [new AlignmentDirectional].
///
/// To convert a [AlignmentGeometry] object of indeterminate type into a
/// [Alignment] object, call the [resolve] method.
@immutable
abstract class AlignmentGeometry {
  /// Abstract const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const AlignmentGeometry();

  double get _x;

  double get _start;

  double get _y;

  /// Returns the sum of two [AlignmentGeometry] objects.
  ///
  /// If you know you are adding two [Alignment] or two [AlignmentDirectional]
  /// objects, consider using the `+` operator instead, which always returns an
  /// object of the same type as the operands, and is typed accordingly.
  ///
  /// If [add] is applied to two objects of the same type ([Alignment] or
  /// [AlignmentDirectional]), an object of that type will be returned (though
  /// this is not reflected in the type system). Otherwise, an object
  /// representing a combination of both is returned. That object can be turned
  /// into a concrete [Alignment] using [resolve].
  AlignmentGeometry add(AlignmentGeometry other) {
    return new _MixedAlignment(
      _x + other._x,
      _start + other._start,
      _y + other._y,
    );
  }

  /// Returns the negation of the given [AlignmentGeometry] object.
  ///
  /// This is the same as multiplying the object by -1.0.
  ///
  /// This operator returns an object of the same type as the operand.
  AlignmentGeometry operator -();

  /// Scales the [AlignmentGeometry] object in each dimension by the given factor.
  ///
  /// This operator returns an object of the same type as the operand.
  AlignmentGeometry operator *(double other);

  /// Divides the [AlignmentGeometry] object in each dimension by the given factor.
  ///
  /// This operator returns an object of the same type as the operand.
  AlignmentGeometry operator /(double other);

  /// Integer divides the [AlignmentGeometry] object in each dimension by the given factor.
  ///
  /// This operator returns an object of the same type as the operand.
  AlignmentGeometry operator ~/(double other);

  /// Computes the remainder in each dimension by the given factor.
  ///
  /// This operator returns an object of the same type as the operand.
  AlignmentGeometry operator %(double other);

  /// Linearly interpolate between two [AlignmentGeometry] objects.
  ///
  /// If either is null, this function interpolates from [Alignment.center], and
  /// the result is an object of the same type as the non-null argument.
  ///
  /// If [lerp] is applied to two objects of the same type ([Alignment] or
  /// [AlignmentDirectional]), an object of that type will be returned (though
  /// this is not reflected in the type system). Otherwise, an object
  /// representing a combination of both is returned. That object can be turned
  /// into a concrete [Alignment] using [resolve].
87 88 89 90 91 92 93 94 95 96 97 98
  ///
  /// The `t` argument represents position on the timeline, with 0.0 meaning
  /// that the interpolation has not started, returning `a` (or something
  /// equivalent to `a`), 1.0 meaning that the interpolation has finished,
  /// returning `b` (or something equivalent to `b`), and values in between
  /// meaning that the interpolation is at the relevant point on the timeline
  /// between `a` and `b`. The interpolation can be extrapolated beyond 0.0 and
  /// 1.0, so negative values and values greater than 1.0 are valid (and can
  /// easily be generated by curves such as [Curves.elasticInOut]).
  ///
  /// Values for `t` are usually obtained from an [Animation<double>], such as
  /// an [AnimationController].
99
  static AlignmentGeometry lerp(AlignmentGeometry a, AlignmentGeometry b, double t) {
100
    assert(t != null);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    if (a == null && b == null)
      return null;
    if (a == null)
      return b * t;
    if (b == null)
      return a * (1.0 - t);
    if (a is Alignment && b is Alignment)
      return Alignment.lerp(a, b, t);
    if (a is AlignmentDirectional && b is AlignmentDirectional)
      return AlignmentDirectional.lerp(a, b, t);
    return new _MixedAlignment(
      ui.lerpDouble(a._x, b._x, t),
      ui.lerpDouble(a._start, b._start, t),
      ui.lerpDouble(a._y, b._y, t),
    );
  }

  /// Convert this instance into a [Alignment], which uses literal
  /// coordinates (the `x` coordinate being explicitly a distance from the
  /// left).
  ///
  /// See also:
  ///
  ///  * [Alignment], for which this is a no-op (returns itself).
  ///  * [AlignmentDirectional], which flips the horizontal direction
  ///    based on the `direction` argument.
  Alignment resolve(TextDirection direction);

  @override
  String toString() {
    if (_start == 0.0)
      return Alignment._stringify(_x, _y);
    if (_x == 0.0)
      return AlignmentDirectional._stringify(_start, _y);
    return Alignment._stringify(_x, _y) + ' + ' + AlignmentDirectional._stringify(_start, 0.0);
  }

  @override
  bool operator ==(dynamic other) {
    if (other is! AlignmentGeometry)
      return false;
    final AlignmentGeometry typedOther = other;
    return _x == typedOther._x &&
           _start == typedOther._start &&
           _y == typedOther._y;
  }

  @override
  int get hashCode => hashValues(_x, _start, _y);
}

/// A point within a rectangle.
///
/// `Alignment(0.0, 0.0)` represents the center of the rectangle. The distance
/// from -1.0 to +1.0 is the distance from one side of the rectangle to the
/// other side of the rectangle. Therefore, 2.0 units horizontally (or
/// vertically) is equivalent to the width (or height) of the rectangle.
///
/// `Alignment(-1.0, -1.0)` represents the top left of the rectangle.
///
/// `Alignment(1.0, 1.0)` represents the bottom right of the rectangle.
///
/// `Alignment(0.0, 3.0)` represents a point that is horizontally centered with
164
/// respect to the rectangle and vertically below the bottom of the rectangle by
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/// the height of the rectangle.
///
/// [Alignment] use visual coordinates, which means increasing [x] moves the
/// point from left to right. To support layouts with a right-to-left
/// [TextDirection], consider using [AlignmentDirectional], in which the
/// direction the point moves when increasing the horizontal value depends on
/// the [TextDirection].
///
/// A variety of widgets use [Alignment] in their configuration, most
/// notably:
///
///  * [Align] positions a child according to a [Alignment].
///
/// See also:
///
///  * [AlignmentDirectional], which has a horizontal coordinate orientation
///    that depends on the [TextDirection].
///  * [AlignmentGeometry], which is an abstract type that is agnostic as to
///    whether the horizontal direction depends on the [TextDirection].
class Alignment extends AlignmentGeometry {
  /// Creates an alignment.
  ///
  /// The [x] and [y] arguments must not be null.
  const Alignment(this.x, this.y)
    : assert(x != null),
      assert(y != null);

  /// The distance fraction in the horizontal direction.
  ///
  /// A value of -1.0 corresponds to the leftmost edge. A value of 1.0
  /// corresponds to the rightmost edge. Values are not limited to that range;
  /// values less than -1.0 represent positions to the left of the left edge,
  /// and values greater than 1.0 represent positions to the right of the right
  /// edge.
  final double x;

  /// The distance fraction in the vertical direction.
  ///
  /// A value of -1.0 corresponds to the topmost edge. A value of 1.0
  /// corresponds to the bottommost edge. Values are not limited to that range;
  /// values less than -1.0 represent positions above the top, and values
  /// greater than 1.0 represent positions below the bottom.
  final double y;

  @override
  double get _x => x;

  @override
  double get _start => 0.0;

  @override
  double get _y => y;

  /// The top left corner.
  static const Alignment topLeft = const Alignment(-1.0, -1.0);

  /// The center point along the top edge.
  static const Alignment topCenter = const Alignment(0.0, -1.0);

  /// The top right corner.
  static const Alignment topRight = const Alignment(1.0, -1.0);

  /// The center point along the left edge.
  static const Alignment centerLeft = const Alignment(-1.0, 0.0);

  /// The center point, both horizontally and vertically.
  static const Alignment center = const Alignment(0.0, 0.0);

  /// The center point along the right edge.
  static const Alignment centerRight = const Alignment(1.0, 0.0);

  /// The bottom left corner.
  static const Alignment bottomLeft = const Alignment(-1.0, 1.0);

  /// The center point along the bottom edge.
  static const Alignment bottomCenter = const Alignment(0.0, 1.0);

  /// The bottom right corner.
  static const Alignment bottomRight = const Alignment(1.0, 1.0);

  @override
  AlignmentGeometry add(AlignmentGeometry other) {
    if (other is Alignment)
      return this + other;
    return super.add(other);
  }

  /// Returns the difference between two [Alignment]s.
  Alignment operator -(Alignment other) {
    return new Alignment(x - other.x, y - other.y);
  }

  /// Returns the sum of two [Alignment]s.
  Alignment operator +(Alignment other) {
    return new Alignment(x + other.x, y + other.y);
  }

  /// Returns the negation of the given [Alignment].
  @override
  Alignment operator -() {
    return new Alignment(-x, -y);
  }

  /// Scales the [Alignment] in each dimension by the given factor.
  @override
  Alignment operator *(double other) {
    return new Alignment(x * other, y * other);
  }

  /// Divides the [Alignment] in each dimension by the given factor.
  @override
  Alignment operator /(double other) {
    return new Alignment(x / other, y / other);
  }

  /// Integer divides the [Alignment] in each dimension by the given factor.
  @override
  Alignment operator ~/(double other) {
    return new Alignment((x ~/ other).toDouble(), (y ~/ other).toDouble());
  }

  /// Computes the remainder in each dimension by the given factor.
  @override
  Alignment operator %(double other) {
    return new Alignment(x % other, y % other);
  }

  /// Returns the offset that is this fraction in the direction of the given offset.
  Offset alongOffset(Offset other) {
    final double centerX = other.dx / 2.0;
    final double centerY = other.dy / 2.0;
    return new Offset(centerX + x * centerX, centerY + y * centerY);
  }

  /// Returns the offset that is this fraction within the given size.
  Offset alongSize(Size other) {
    final double centerX = other.width / 2.0;
    final double centerY = other.height / 2.0;
    return new Offset(centerX + x * centerX, centerY + y * centerY);
  }

  /// Returns the point that is this fraction within the given rect.
  Offset withinRect(Rect rect) {
    final double halfWidth = rect.width / 2.0;
    final double halfHeight = rect.height / 2.0;
    return new Offset(
      rect.left + halfWidth + x * halfWidth,
      rect.top + halfHeight + y * halfHeight,
    );
  }

  /// Returns a rect of the given size, aligned within given rect as specified
  /// by this alignment.
  ///
  /// For example, a 100×100 size inscribed on a 200×200 rect using
  /// [Alignment.topLeft] would be the 100×100 rect at the top left of
  /// the 200×200 rect.
  Rect inscribe(Size size, Rect rect) {
    final double halfWidthDelta = (rect.width - size.width) / 2.0;
    final double halfHeightDelta = (rect.height - size.height) / 2.0;
    return new Rect.fromLTWH(
      rect.left + halfWidthDelta + x * halfWidthDelta,
      rect.top + halfHeightDelta + y * halfHeightDelta,
      size.width,
      size.height,
    );
  }

  /// Linearly interpolate between two [Alignment]s.
  ///
  /// If either is null, this function interpolates from [Alignment.center].
336 337 338 339 340 341 342 343 344 345 346 347
  ///
  /// The `t` argument represents position on the timeline, with 0.0 meaning
  /// that the interpolation has not started, returning `a` (or something
  /// equivalent to `a`), 1.0 meaning that the interpolation has finished,
  /// returning `b` (or something equivalent to `b`), and values in between
  /// meaning that the interpolation is at the relevant point on the timeline
  /// between `a` and `b`. The interpolation can be extrapolated beyond 0.0 and
  /// 1.0, so negative values and values greater than 1.0 are valid (and can
  /// easily be generated by curves such as [Curves.elasticInOut]).
  ///
  /// Values for `t` are usually obtained from an [Animation<double>], such as
  /// an [AnimationController].
348
  static Alignment lerp(Alignment a, Alignment b, double t) {
349
    assert(t != null);
350 351 352 353 354 355 356 357 358 359 360 361 362 363
    if (a == null && b == null)
      return null;
    if (a == null)
      return new Alignment(ui.lerpDouble(0.0, b.x, t), ui.lerpDouble(0.0, b.y, t));
    if (b == null)
      return new Alignment(ui.lerpDouble(a.x, 0.0, t), ui.lerpDouble(a.y, 0.0, t));
    return new Alignment(ui.lerpDouble(a.x, b.x, t), ui.lerpDouble(a.y, b.y, t));
  }

  @override
  Alignment resolve(TextDirection direction) => this;

  static String _stringify(double x, double y) {
    if (x == -1.0 && y == -1.0)
364
      return 'topLeft';
365
    if (x == 0.0 && y == -1.0)
366
      return 'topCenter';
367
    if (x == 1.0 && y == -1.0)
368
      return 'topRight';
369
    if (x == -1.0 && y == 0.0)
370
      return 'centerLeft';
371
    if (x == 0.0 && y == 0.0)
372
      return 'center';
373
    if (x == 1.0 && y == 0.0)
374
      return 'centerRight';
375
    if (x == -1.0 && y == 1.0)
376
      return 'bottomLeft';
377
    if (x == 0.0 && y == 1.0)
378
      return 'bottomCenter';
379
    if (x == 1.0 && y == 1.0)
380
      return 'bottomRight';
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    return 'Alignment(${x.toStringAsFixed(1)}, '
                     '${y.toStringAsFixed(1)})';
  }

  @override
  String toString() => _stringify(x, y);
}

/// An offset that's expressed as a fraction of a [Size], but whose horizontal
/// component is dependent on the writing direction.
///
/// This can be used to indicate an offset from the left in [TextDirection.ltr]
/// text and an offset from the right in [TextDirection.rtl] text without having
/// to be aware of the current text direction.
///
/// See also:
///
///  * [Alignment], a variant that is defined in physical terms (i.e.
///    whose horizontal component does not depend on the text direction).
class AlignmentDirectional extends AlignmentGeometry {
  /// Creates a directional alignment.
  ///
  /// The [start] and [y] arguments must not be null.
  const AlignmentDirectional(this.start, this.y)
    : assert(start != null),
      assert(y != null);

  /// The distance fraction in the horizontal direction.
  ///
  /// A value of -1.0 corresponds to the edge on the "start" side, which is the
  /// left side in [TextDirection.ltr] contexts and the right side in
  /// [TextDirection.rtl] contexts. A value of 1.0 corresponds to the opposite
  /// edge, the "end" side. Values are not limited to that range; values less
  /// than -1.0 represent positions beyond the start edge, and values greater than
  /// 1.0 represent positions beyond the end edge.
  ///
  /// This value is normalized into a [Alignment.x] value by the [resolve]
  /// method.
  final double start;

  /// The distance fraction in the vertical direction.
  ///
  /// A value of -1.0 corresponds to the topmost edge. A value of 1.0
  /// corresponds to the bottommost edge. Values are not limited to that range;
  /// values less than -1.0 represent positions above the top, and values
  /// greater than 1.0 represent positions below the bottom.
  ///
  /// This value is passed through to [Alignment.y] unmodified by the
  /// [resolve] method.
  final double y;

  @override
  double get _x => 0.0;

  @override
  double get _start => start;

  @override
  double get _y => y;

  /// The top corner on the "start" side.
  static const AlignmentDirectional topStart = const AlignmentDirectional(-1.0, -1.0);

  /// The center point along the top edge.
  ///
  /// Consider using [Alignment.topCenter] instead, as it does not need
  /// to be [resolve]d to be used.
  static const AlignmentDirectional topCenter = const AlignmentDirectional(0.0, -1.0);

  /// The top corner on the "end" side.
  static const AlignmentDirectional topEnd = const AlignmentDirectional(1.0, -1.0);

  /// The center point along the "start" edge.
  static const AlignmentDirectional centerStart = const AlignmentDirectional(-1.0, 0.0);

  /// The center point, both horizontally and vertically.
  ///
  /// Consider using [Alignment.center] instead, as it does not need to
  /// be [resolve]d to be used.
  static const AlignmentDirectional center = const AlignmentDirectional(0.0, 0.0);

  /// The center point along the "end" edge.
  static const AlignmentDirectional centerEnd = const AlignmentDirectional(1.0, 0.0);

  /// The bottom corner on the "start" side.
  static const AlignmentDirectional bottomStart = const AlignmentDirectional(-1.0, 1.0);

  /// The center point along the bottom edge.
  ///
  /// Consider using [Alignment.bottomCenter] instead, as it does not
  /// need to be [resolve]d to be used.
  static const AlignmentDirectional bottomCenter = const AlignmentDirectional(0.0, 1.0);

  /// The bottom corner on the "end" side.
  static const AlignmentDirectional bottomEnd = const AlignmentDirectional(1.0, 1.0);

  @override
  AlignmentGeometry add(AlignmentGeometry other) {
    if (other is AlignmentDirectional)
      return this + other;
    return super.add(other);
  }

  /// Returns the difference between two [AlignmentDirectional]s.
  AlignmentDirectional operator -(AlignmentDirectional other) {
    return new AlignmentDirectional(start - other.start, y - other.y);
  }

  /// Returns the sum of two [AlignmentDirectional]s.
  AlignmentDirectional operator +(AlignmentDirectional other) {
    return new AlignmentDirectional(start + other.start, y + other.y);
  }

  /// Returns the negation of the given [AlignmentDirectional].
  @override
  AlignmentDirectional operator -() {
    return new AlignmentDirectional(-start, -y);
  }

  /// Scales the [AlignmentDirectional] in each dimension by the given factor.
  @override
  AlignmentDirectional operator *(double other) {
    return new AlignmentDirectional(start * other, y * other);
  }

  /// Divides the [AlignmentDirectional] in each dimension by the given factor.
  @override
  AlignmentDirectional operator /(double other) {
    return new AlignmentDirectional(start / other, y / other);
  }

  /// Integer divides the [AlignmentDirectional] in each dimension by the given factor.
  @override
  AlignmentDirectional operator ~/(double other) {
    return new AlignmentDirectional((start ~/ other).toDouble(), (y ~/ other).toDouble());
  }

  /// Computes the remainder in each dimension by the given factor.
  @override
  AlignmentDirectional operator %(double other) {
    return new AlignmentDirectional(start % other, y % other);
  }

  /// Linearly interpolate between two [AlignmentDirectional]s.
  ///
  /// If either is null, this function interpolates from [AlignmentDirectional.center].
527 528 529 530 531 532 533 534 535 536 537 538
  ///
  /// The `t` argument represents position on the timeline, with 0.0 meaning
  /// that the interpolation has not started, returning `a` (or something
  /// equivalent to `a`), 1.0 meaning that the interpolation has finished,
  /// returning `b` (or something equivalent to `b`), and values in between
  /// meaning that the interpolation is at the relevant point on the timeline
  /// between `a` and `b`. The interpolation can be extrapolated beyond 0.0 and
  /// 1.0, so negative values and values greater than 1.0 are valid (and can
  /// easily be generated by curves such as [Curves.elasticInOut]).
  ///
  /// Values for `t` are usually obtained from an [Animation<double>], such as
  /// an [AnimationController].
539
  static AlignmentDirectional lerp(AlignmentDirectional a, AlignmentDirectional b, double t) {
540
    assert(t != null);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    if (a == null && b == null)
      return null;
    if (a == null)
      return new AlignmentDirectional(ui.lerpDouble(0.0, b.start, t), ui.lerpDouble(0.0, b.y, t));
    if (b == null)
      return new AlignmentDirectional(ui.lerpDouble(a.start, 0.0, t), ui.lerpDouble(a.y, 0.0, t));
    return new AlignmentDirectional(ui.lerpDouble(a.start, b.start, t), ui.lerpDouble(a.y, b.y, t));
  }

  @override
  Alignment resolve(TextDirection direction) {
    assert(direction != null);
    switch (direction) {
      case TextDirection.rtl:
        return new Alignment(-start, y);
      case TextDirection.ltr:
        return new Alignment(start, y);
    }
    return null;
  }

  static String _stringify(double start, double y) {
    if (start == -1.0 && y == -1.0)
      return 'AlignmentDirectional.topStart';
    if (start == 0.0 && y == -1.0)
      return 'AlignmentDirectional.topCenter';
    if (start == 1.0 && y == -1.0)
      return 'AlignmentDirectional.topEnd';
    if (start == -1.0 && y == 0.0)
      return 'AlignmentDirectional.centerStart';
    if (start == 0.0 && y == 0.0)
      return 'AlignmentDirectional.center';
    if (start == 1.0 && y == 0.0)
      return 'AlignmentDirectional.centerEnd';
    if (start == -1.0 && y == 1.0)
      return 'AlignmentDirectional.bottomStart';
    if (start == 0.0 && y == 1.0)
      return 'AlignmentDirectional.bottomCenter';
    if (start == 1.0 && y == 1.0)
      return 'AlignmentDirectional.bottomEnd';
    return 'AlignmentDirectional(${start.toStringAsFixed(1)}, '
582
                                '${y.toStringAsFixed(1)})';
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
  }

  @override
  String toString() => _stringify(start, y);
}

class _MixedAlignment extends AlignmentGeometry {
  const _MixedAlignment(this._x, this._start, this._y);

  @override
  final double _x;

  @override
  final double _start;

  @override
  final double _y;

  @override
  _MixedAlignment operator -() {
    return new _MixedAlignment(
      -_x,
      -_start,
      -_y,
    );
  }

  @override
  _MixedAlignment operator *(double other) {
    return new _MixedAlignment(
      _x * other,
      _start * other,
      _y * other,
    );
  }

  @override
  _MixedAlignment operator /(double other) {
    return new _MixedAlignment(
      _x / other,
      _start / other,
      _y / other,
    );
  }

  @override
  _MixedAlignment operator ~/(double other) {
    return new _MixedAlignment(
      (_x ~/ other).toDouble(),
      (_start ~/ other).toDouble(),
      (_y ~/ other).toDouble(),
    );
  }

  @override
  _MixedAlignment operator %(double other) {
    return new _MixedAlignment(
      _x % other,
      _start % other,
      _y % other,
    );
  }

  @override
  Alignment resolve(TextDirection direction) {
    assert(direction != null);
    switch (direction) {
      case TextDirection.rtl:
        return new Alignment(_x - _start, _y);
      case TextDirection.ltr:
        return new Alignment(_x + _start, _y);
    }
    return null;
  }
}