animation.dart 9.42 KB
Newer Older
Ian Hickson's avatar
Ian Hickson committed
1
// Copyright 2014 The Flutter Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
/// The Flutter animation system.
6
///
7
/// To use, import `package:flutter/animation.dart`.
8
///
9 10 11 12 13 14 15
/// This library provides basic building blocks for implementing animations in
/// Flutter. Other layers of the framework use these building blocks to provide
/// advanced animation support for applications. For example, the widget library
/// includes [ImplicitlyAnimatedWidget]s and [AnimatedWidget]s that make it easy
/// to animate certain properties of a [Widget]. If those animated widgets are
/// not sufficient for a given use case, the basic building blocks provided by
/// this library can be used to implement custom animated effects.
16
///
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/// This library depends only on core Dart libraries and the `physics.dart`
/// library.
///
///
/// ### Foundations: the Animation class
///
/// Flutter represents an animation as a value that changes over a given
/// duration, and that value may be of any type. For example, it could be a
/// [double] indicating the current opacity of a [Widget] as it fades out. Or,
/// it could be the current background [Color] of a widget that transitions
/// smoothly from one color to another. The current value of an animation is
/// represented by an [Animation] object, which is the central class of the
/// animation library. In addition to the current animation value, the
/// [Animation] object also stores the current [AnimationStatus]. The status
/// indicates whether the animation is currently conceptually running from the
/// beginning to the end or the other way around. It may also indicate that the
/// animation is currently stopped at the beginning or the end.
///
/// Other objects can register listeners on an [Animation] to be informed
/// whenever the animation value and/or the animation status changes. A [Widget]
/// may register such a *value* listener via [Animation.addListener] to rebuild
/// itself with the current animation value whenever that value changes. For
/// example, a widget might listen to an animation to update its opacity to the
/// animation's value every time that value changes. Likewise, registering a
/// *status* listener via [Animation.addStatusListener] may be useful to trigger
/// another action when the current animation has ended.
///
/// As an example, the following video shows the changes over time in the
/// current animation status and animation value for the opacity animation of a
/// widget. This [Animation] is driven by an [AnimationController] (see next
/// section). Before the animation triggers, the animation status is "dismissed"
/// and the value is 0.0. As the value runs from 0.0 to 1.0 to fade in the
/// widget, the status changes to "forward". When the widget is fully faded in
/// at an animation value of 1.0 the status is "completed". When the animation
/// triggers again to fade the widget back out, the animation status changes to
/// "reverse" and the animation value runs back to 0.0. At that point the widget
/// is fully faded out and the animation status switches back to "dismissed"
/// until the animation is triggered again.
///
/// {@animation 420 100 https://flutter.github.io/assets-for-api-docs/assets/animation/animation_status_value.mp4}
///
/// Although you can't instantiate [Animation] directly (it is an abstract
/// class), you can create one using an [AnimationController].
///
///
/// ### Powering animations: AnimationController
///
/// An [AnimationController] is a special kind of [Animation] that advances its
/// animation value whenever the device running the application is ready to
/// display a new frame (typically, this rate is around 60 values per second).
/// An [AnimationController] can be used wherever an [Animation] is expected. As
/// the name implies, an [AnimationController] also provides control over its
/// [Animation]: It implements methods to stop the animation at any time and to
/// run it forward as well as in the reverse direction.
///
/// By default, an [AnimationController] increases its animation value linearly
/// over the given duration from 0.0 to 1.0 when run in the forward direction.
/// For many use cases you might want the value to be of a different type,
/// change the range of the animation values, or change how the animation moves
/// between values. This is achieved by wrapping the animation: Wrapping it in
/// an [Animatable] (see below) changes the range of animation values to a
/// different range or type (for example to animate [Color]s or [Rect]s).
/// Furthermore, a [Curve] can be applied to the animation by wrapping it in a
/// [CurvedAnimation]. Instead of linearly increasing the animation value, a
/// curved animation changes its value according to the provided curve. The
/// framework ships with many built-in curves (see [Curves]). As an example,
/// [Curves.easeOutCubic] increases the animation value quickly at the beginning
/// of the animation and then slows down until the target value is reached:
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_cubic.mp4}
///
///
/// ### Animating different types: Animatable
///
/// An `Animatable<T>` is an object that takes an `Animation<double>` as input
/// and produces a value of type `T`. Objects of these types can be used to
/// translate the animation value range of an [AnimationController] (or any
/// other [Animation] of type [double]) to a different range. That new range
/// doesn't even have to be of type double anymore. With the help of an
/// [Animatable] like a [Tween] or a [TweenSequence] (see sections below) an
/// [AnimationController] can be used to smoothly transition [Color]s, [Rect]s,
/// [Size]s and many more types from one value to another over a given duration.
///
///
/// ### Interpolating values: Tweens
///
/// A [Tween] is applied to an [Animation] of type [double] to change the
/// range and type of the animation value. For example, to transition the
/// background of a [Widget] smoothly between two [Color]s, a [ColorTween] can
/// be used. Each [Tween] specifies a start and an end value. As the animation
/// value of the [Animation] powering the [Tween] progresses from 0.0 to 1.0 it
/// produces interpolated values between its start and end value. The values
/// produced by the [Tween] usually move closer and closer to its end value as
/// the animation value of the powering [Animation] approaches 1.0.
///
/// The following video shows example values produced by an [IntTween], a
/// `Tween<double>`, and a [ColorTween] as the animation value runs from 0.0 to
/// 1.0 and back to 0.0:
///
/// {@animation 530 150 https://flutter.github.io/assets-for-api-docs/assets/animation/tweens.mp4}
///
/// An [Animation] or [AnimationController] can power multiple [Tween]s. For
/// example, to animate the size and the color of a widget in parallel, create
/// one [AnimationController] that powers a [SizeTween] and a [ColorTween].
///
/// The framework ships with many [Tween] subclasses ([IntTween], [SizeTween],
/// [RectTween], etc.) to animate common properties.
///
///
/// ### Staggered animations: TweenSequences
///
/// A [TweenSequence] can help animate a given property smoothly in stages. Each
/// [Tween] in the sequence is responsible for a different stage and has an
/// associated weight. When the animation runs, the stages execute one after
/// another. For example, let's say you want to animate the background of a
/// widget from yellow to green and then, after a short pause, to red. For this
/// you can specify three tweens within a tween sequence: One [ColorTween]
134 135
/// animating from yellow to green, one [ConstantTween] that just holds the color
/// green, and another [ColorTween] animating from green to red. For each
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/// tween you need to pick a weight indicating the ratio of time spent on that
/// tween compared to all other tweens. If we assign a weight of 2 to both of
/// the [ColorTween]s and a weight of 1 to the [ConstantTween] the transition
/// described by the [ColorTween]s would take twice as long as the
/// [ConstantTween]. A [TweenSequence] is driven by an [Animation] just like a
/// regular [Tween]: As the powering [Animation] runs from 0.0 to 1.0 the
/// [TweenSequence] runs through all of its stages.
///
/// The following video shows the animation described in the previous paragraph:
///
/// {@animation 646 250 https://flutter.github.io/assets-for-api-docs/assets/animation/tween_sequence.mp4}
///
///
/// See also:
///
///  * [Introduction to animations](https://flutter.dev/docs/development/ui/animations)
///    on flutter.dev.
///  * [Animations tutorial](https://flutter.dev/docs/development/ui/animations/tutorial)
///    on flutter.dev.
///  * [Sample app](https://github.com/flutter/samples/tree/master/animations),
///    which showcases Flutter's animation features.
///  * [ImplicitlyAnimatedWidget] and its subclasses, which are [Widget]s that
///    implicitly animate changes to their properties.
///  * [AnimatedWidget] and its subclasses, which are [Widget]s that take an
///    explicit [Animation] to animate their properties.
161 162
library animation;

163 164 165
// AnimationController can throw TickerCanceled
export 'package:flutter/scheduler.dart' show TickerCanceled;

166 167
export 'src/animation/animation.dart';
export 'src/animation/animation_controller.dart';
168
export 'src/animation/animations.dart';
169
export 'src/animation/curves.dart';
170
export 'src/animation/listener_helpers.dart';
171
export 'src/animation/tween.dart';
172
export 'src/animation/tween_sequence.dart';