focus_traversal.dart 74 KB
Newer Older
Ian Hickson's avatar
Ian Hickson committed
1
// Copyright 2014 The Flutter Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
import 'dart:ui';

7
import 'package:collection/collection.dart';
8 9 10
import 'package:flutter/foundation.dart';
import 'package:flutter/painting.dart';

11
import 'actions.dart';
12
import 'basic.dart';
13
import 'editable_text.dart';
14
import 'focus_manager.dart';
15
import 'focus_scope.dart';
16
import 'framework.dart';
17 18
import 'scroll_position.dart';
import 'scrollable.dart';
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// BuildContext/Element doesn't have a parent accessor, but it can be simulated
// with visitAncestorElements. _getAncestor is needed because
// context.getElementForInheritedWidgetOfExactType will return itself if it
// happens to be of the correct type. _getAncestor should be O(count), since we
// always return false at a specific ancestor. By default it returns the parent,
// which is O(1).
BuildContext _getAncestor(BuildContext context, {int count = 1}) {
  BuildContext target;
  context.visitAncestorElements((Element ancestor) {
    count--;
    if (count == 0) {
      target = ancestor;
      return false;
    }
    return true;
  });
  return target;
}

void _focusAndEnsureVisible(
  FocusNode node, {
  ScrollPositionAlignmentPolicy alignmentPolicy = ScrollPositionAlignmentPolicy.explicit,
}) {
  node.requestFocus();
  Scrollable.ensureVisible(node.context, alignment: 1.0, alignmentPolicy: alignmentPolicy);
}

// A class to temporarily hold information about FocusTraversalGroups when
// sorting their contents.
class _FocusTraversalGroupInfo {
  _FocusTraversalGroupInfo(
    _FocusTraversalGroupMarker marker, {
    FocusTraversalPolicy defaultPolicy,
    List<FocusNode> members,
  })  : groupNode = marker?.focusNode,
        policy = marker?.policy ?? defaultPolicy ?? ReadingOrderTraversalPolicy(),
        members = members ?? <FocusNode>[];

  final FocusNode groupNode;
  final FocusTraversalPolicy policy;
  final List<FocusNode> members;
}

63 64
/// A direction along either the horizontal or vertical axes.
///
65 66 67
/// This is used by the [DirectionalFocusTraversalPolicyMixin], and
/// [Focus.focusInDirection] to indicate which direction to look in for the next
/// focus.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
enum TraversalDirection {
  /// Indicates a direction above the currently focused widget.
  up,

  /// Indicates a direction to the right of the currently focused widget.
  ///
  /// This direction is unaffected by the [Directionality] of the current
  /// context.
  right,

  /// Indicates a direction below the currently focused widget.
  down,

  /// Indicates a direction to the left of the currently focused widget.
  ///
  /// This direction is unaffected by the [Directionality] of the current
  /// context.
  left,

  // TODO(gspencer): Add diagonal traversal directions used by TV remotes and
  // game controllers when we support them.
}

/// An object used to specify a focus traversal policy used for configuring a
92
/// [FocusTraversalGroup] widget.
93 94 95 96 97 98 99
///
/// The focus traversal policy is what determines which widget is "next",
/// "previous", or in a direction from the currently focused [FocusNode].
///
/// One of the pre-defined subclasses may be used, or define a custom policy to
/// create a unique focus order.
///
100 101 102
/// When defining your own, your subclass should implement [sortDescendants] to
/// provide the order in which you would like the descendants to be traversed.
///
103 104
/// See also:
///
105
///  * [FocusNode], for a description of the focus system.
106 107
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
108
///  * [FocusNode], which is affected by the traversal policy.
109
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
110 111 112
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
113 114
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
115 116
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
117
@immutable
118
abstract class FocusTraversalPolicy with Diagnosticable {
119 120 121
  /// A const constructor so subclasses can be const.
  const FocusTraversalPolicy();

122
  /// Returns the node that should receive focus if there is no current focus
123
  /// in the nearest [FocusScopeNode] that `currentNode` belongs to.
124 125
  ///
  /// This is used by [next]/[previous]/[inDirection] to determine which node to
126
  /// focus if they are called when no node is currently focused.
127
  ///
128
  /// The `currentNode` argument must not be null.
129
  ///
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  /// The default implementation returns the [FocusScopeNode.focusedChild], if
  /// set, on the nearest scope of the `currentNode`, otherwise, returns the
  /// first node from [sortDescendants], or the given `currentNode` if there are
  /// no descendants.
  FocusNode findFirstFocus(FocusNode currentNode) {
    assert(currentNode != null);
    final FocusScopeNode scope = currentNode.nearestScope;
    FocusNode candidate = scope.focusedChild;
    if (candidate == null && scope.descendants.isNotEmpty) {
      final Iterable<FocusNode> sorted = _sortAllDescendants(scope);
      candidate = sorted.isNotEmpty ? sorted.first : null;
    }

    // If we still didn't find any candidate, use the current node as a
    // fallback.
    candidate ??= currentNode;
    return candidate;
  }
148

149 150 151
  /// Returns the first node in the given `direction` that should receive focus
  /// if there is no current focus in the scope to which the `currentNode`
  /// belongs.
152 153
  ///
  /// This is typically used by [inDirection] to determine which node to focus
154
  /// if it is called when no node is currently focused.
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  ///
  /// All arguments must not be null.
  FocusNode findFirstFocusInDirection(FocusNode currentNode, TraversalDirection direction);

  /// Clears the data associated with the given [FocusScopeNode] for this object.
  ///
  /// This is used to indicate that the focus policy has changed its mode, and
  /// so any cached policy data should be invalidated. For example, changing the
  /// direction in which focus is moving, or changing from directional to
  /// next/previous navigation modes.
  ///
  /// The default implementation does nothing.
  @mustCallSuper
  @protected
  void invalidateScopeData(FocusScopeNode node) {}

171
  /// This is called whenever the given [node] is re-parented into a new scope,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  /// so that the policy has a chance to update or invalidate any cached data
  /// that it maintains per scope about the node.
  ///
  /// The [oldScope] is the previous scope that this node belonged to, if any.
  ///
  /// The default implementation does nothing.
  @mustCallSuper
  void changedScope({FocusNode node, FocusScopeNode oldScope}) {}

  /// Focuses the next widget in the focus scope that contains the given
  /// [currentNode].
  ///
  /// This should determine what the next node to receive focus should be by
  /// inspecting the node tree, and then calling [FocusNode.requestFocus] on
  /// the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// The [currentNode] argument must not be null.
191
  bool next(FocusNode currentNode) => _moveFocus(currentNode, forward: true);
192 193 194 195 196 197 198 199 200 201 202

  /// Focuses the previous widget in the focus scope that contains the given
  /// [currentNode].
  ///
  /// This should determine what the previous node to receive focus should be by
  /// inspecting the node tree, and then calling [FocusNode.requestFocus] on
  /// the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// The [currentNode] argument must not be null.
203
  bool previous(FocusNode currentNode) => _moveFocus(currentNode, forward: false);
204 205 206 207 208 209 210 211 212 213 214 215 216

  /// Focuses the next widget in the given [direction] in the focus scope that
  /// contains the given [currentNode].
  ///
  /// This should determine what the next node to receive focus in the given
  /// [direction] should be by inspecting the node tree, and then calling
  /// [FocusNode.requestFocus] on the node that has been selected.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// All arguments must not be null.
  bool inDirection(FocusNode currentNode, TraversalDirection direction);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  /// Sorts the given `descendants` into focus order.
  ///
  /// Subclasses should override this to implement a different sort for [next]
  /// and [previous] to use in their ordering. If the returned iterable omits a
  /// node that is a descendant of the given scope, then the user will be unable
  /// to use next/previous keyboard traversal to reach that node, and if that
  /// node is used as the originator of a call to next/previous (i.e. supplied
  /// as the argument to [next] or [previous]), then the next or previous node
  /// will not be able to be determined and the focus will not change.
  ///
  /// This is not used for directional focus ([inDirection]), only for
  /// determining the focus order for [next] and [previous].
  ///
  /// When implementing an override for this function, be sure to use
  /// [mergeSort] instead of Dart's default list sorting algorithm when sorting
  /// items, since the default algorithm is not stable (items deemed to be equal
  /// can appear in arbitrary order, and change positions between sorts), whereas
  /// [mergeSort] is stable.
  @protected
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants);

  _FocusTraversalGroupMarker _getMarker(BuildContext context) {
    return context?.getElementForInheritedWidgetOfExactType<_FocusTraversalGroupMarker>()?.widget as _FocusTraversalGroupMarker;
  }

  // Sort all descendants, taking into account the FocusTraversalGroup
  // that they are each in, and filtering out non-traversable/focusable nodes.
  List<FocusNode> _sortAllDescendants(FocusScopeNode scope) {
    assert(scope != null);
    final _FocusTraversalGroupMarker scopeGroupMarker = _getMarker(scope.context);
    final FocusTraversalPolicy defaultPolicy = scopeGroupMarker?.policy ?? ReadingOrderTraversalPolicy();
    // Build the sorting data structure, separating descendants into groups.
    final Map<FocusNode, _FocusTraversalGroupInfo> groups = <FocusNode, _FocusTraversalGroupInfo>{};
    for (final FocusNode node in scope.descendants) {
      final _FocusTraversalGroupMarker groupMarker = _getMarker(node.context);
      final FocusNode groupNode = groupMarker?.focusNode;
      // Group nodes need to be added to their parent's node, or to the "null"
      // node if no parent is found. This creates the hierarchy of group nodes
      // and makes it so the entire group is sorted along with the other members
      // of the parent group.
      if (node == groupNode) {
        // To find the parent of the group node, we need to skip over the parent
        // of the Focus node in _FocusTraversalGroupState.build, and start
        // looking with that node's parent, since _getMarker will return the
        // context it was called on if it matches the type.
        final BuildContext parentContext = _getAncestor(groupNode.context, count: 2);
        final _FocusTraversalGroupMarker parentMarker = _getMarker(parentContext);
        final FocusNode parentNode = parentMarker?.focusNode;
        groups[parentNode] ??= _FocusTraversalGroupInfo(parentMarker, members: <FocusNode>[], defaultPolicy: defaultPolicy);
        assert(!groups[parentNode].members.contains(node));
        groups[parentNode].members.add(groupNode);
        continue;
      }
      // Skip non-focusable and non-traversable nodes in the same way that
      // FocusScopeNode.traversalDescendants would.
      if (node.canRequestFocus && !node.skipTraversal) {
        groups[groupNode] ??= _FocusTraversalGroupInfo(groupMarker, members: <FocusNode>[], defaultPolicy: defaultPolicy);
        assert(!groups[groupNode].members.contains(node));
        groups[groupNode].members.add(node);
      }
    }

    // Sort the member lists using the individual policy sorts.
    final Set<FocusNode> groupKeys = groups.keys.toSet();
    for (final FocusNode key in groups.keys) {
      final List<FocusNode> sortedMembers = groups[key].policy.sortDescendants(groups[key].members).toList();
      groups[key].members.clear();
      groups[key].members.addAll(sortedMembers);
    }

    // Traverse the group tree, adding the children of members in the order they
    // appear in the member lists.
    final List<FocusNode> sortedDescendants = <FocusNode>[];
    void visitGroups(_FocusTraversalGroupInfo info) {
      for (final FocusNode node in info.members) {
        if (groupKeys.contains(node)) {
          // This is a policy group focus node. Replace it with the members of
          // the corresponding policy group.
          visitGroups(groups[node]);
        } else {
          sortedDescendants.add(node);
        }
      }
    }

    visitGroups(groups[scopeGroupMarker?.focusNode]);
    assert(
      sortedDescendants.toSet().difference(scope.traversalDescendants.toSet()).isEmpty,
      'sorted descendants contains more nodes than it should: (${sortedDescendants.toSet().difference(scope.traversalDescendants.toSet())})'
    );
    assert(
      scope.traversalDescendants.toSet().difference(sortedDescendants.toSet()).isEmpty,
      'sorted descendants are missing some nodes: (${scope.traversalDescendants.toSet().difference(sortedDescendants.toSet())})'
    );
    return sortedDescendants;
  }

  // Moves the focus to the next node in the FocusScopeNode nearest to the
  // currentNode argument, either in a forward or reverse direction, depending
  // on the value of the forward argument.
  //
  // This function is called by the next and previous members to move to the
  // next or previous node, respectively.
  //
  // Uses findFirstFocus to find the first node if there is no
  // FocusScopeNode.focusedChild set. If there is a focused child for the
  // scope, then it calls sortDescendants to get a sorted list of descendants,
  // and then finds the node after the current first focus of the scope if
  // forward is true, and the node before it if forward is false.
  //
  // Returns true if a node requested focus.
  @protected
  bool _moveFocus(FocusNode currentNode, {@required bool forward}) {
    assert(forward != null);
    if (currentNode == null) {
      return false;
    }
    final FocusScopeNode nearestScope = currentNode.nearestScope;
    invalidateScopeData(nearestScope);
    final FocusNode focusedChild = nearestScope.focusedChild;
    if (focusedChild == null) {
      final FocusNode firstFocus = findFirstFocus(currentNode);
      if (firstFocus != null) {
        _focusAndEnsureVisible(
          firstFocus,
          alignmentPolicy: forward ? ScrollPositionAlignmentPolicy.keepVisibleAtEnd : ScrollPositionAlignmentPolicy.keepVisibleAtStart,
        );
        return true;
      }
    }
    final List<FocusNode> sortedNodes = _sortAllDescendants(nearestScope);
    if (forward && focusedChild == sortedNodes.last) {
      _focusAndEnsureVisible(sortedNodes.first, alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd);
      return true;
    }
    if (!forward && focusedChild == sortedNodes.first) {
      _focusAndEnsureVisible(sortedNodes.last, alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart);
      return true;
    }

    final Iterable<FocusNode> maybeFlipped = forward ? sortedNodes : sortedNodes.reversed;
    FocusNode previousNode;
    for (final FocusNode node in maybeFlipped) {
      if (previousNode == focusedChild) {
        _focusAndEnsureVisible(
          node,
          alignmentPolicy: forward ? ScrollPositionAlignmentPolicy.keepVisibleAtEnd : ScrollPositionAlignmentPolicy.keepVisibleAtStart,
        );
        return true;
      }
      previousNode = node;
    }
    return false;
  }
371 372
}

373 374
// A policy data object for use by the DirectionalFocusTraversalPolicyMixin so
// it can keep track of the traversal history.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
class _DirectionalPolicyDataEntry {
  const _DirectionalPolicyDataEntry({@required this.direction, @required this.node})
      : assert(direction != null),
        assert(node != null);

  final TraversalDirection direction;
  final FocusNode node;
}

class _DirectionalPolicyData {
  const _DirectionalPolicyData({@required this.history}) : assert(history != null);

  /// A queue of entries that describe the path taken to the current node.
  final List<_DirectionalPolicyDataEntry> history;
}

/// A mixin class that provides an implementation for finding a node in a
/// particular direction.
///
/// This can be mixed in to other [FocusTraversalPolicy] implementations that
/// only want to implement new next/previous policies.
///
/// Since hysteresis in the navigation order is undesirable, this implementation
/// maintains a stack of previous locations that have been visited on the
/// [policyData] for the affected [FocusScopeNode]. If the previous direction
/// was the opposite of the current direction, then the this policy will request
/// focus on the previously focused node. Change to another direction other than
/// the current one or its opposite will clear the stack.
///
/// For instance, if the focus moves down, down, down, and then up, up, up, it
/// will follow the same path through the widgets in both directions. However,
/// if it moves down, down, down, left, right, and then up, up, up, it may not
407 408
/// follow the same path on the way up as it did on the way down, since changing
/// the axis of motion resets the history.
409 410 411
///
/// See also:
///
412
///  * [FocusNode], for a description of the focus system.
413 414 415
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
416 417 418
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
419 420
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
mixin DirectionalFocusTraversalPolicyMixin on FocusTraversalPolicy {
  final Map<FocusScopeNode, _DirectionalPolicyData> _policyData = <FocusScopeNode, _DirectionalPolicyData>{};

  @override
  void invalidateScopeData(FocusScopeNode node) {
    super.invalidateScopeData(node);
    _policyData.remove(node);
  }

  @override
  void changedScope({FocusNode node, FocusScopeNode oldScope}) {
    super.changedScope(node: node, oldScope: oldScope);
    if (oldScope != null) {
      _policyData[oldScope]?.history?.removeWhere((_DirectionalPolicyDataEntry entry) {
        return entry.node == node;
      });
    }
  }

  @override
  FocusNode findFirstFocusInDirection(FocusNode currentNode, TraversalDirection direction) {
    assert(direction != null);
    assert(currentNode != null);
    switch (direction) {
      case TraversalDirection.up:
        // Find the bottom-most node so we can go up from there.
        return _sortAndFindInitial(currentNode, vertical: true, first: false);
      case TraversalDirection.down:
        // Find the top-most node so we can go down from there.
        return _sortAndFindInitial(currentNode, vertical: true, first: true);
      case TraversalDirection.left:
        // Find the right-most node so we can go left from there.
        return _sortAndFindInitial(currentNode, vertical: false, first: false);
      case TraversalDirection.right:
        // Find the left-most node so we can go right from there.
        return _sortAndFindInitial(currentNode, vertical: false, first: true);
    }
    return null;
  }

461
  FocusNode _sortAndFindInitial(FocusNode currentNode, {bool vertical, bool first}) {
462
    final Iterable<FocusNode> nodes = currentNode.nearestScope.traversalDescendants;
463
    final List<FocusNode> sorted = nodes.toList();
464
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
465 466 467 468 469 470 471 472 473 474 475 476 477 478
      if (vertical) {
        if (first) {
          return a.rect.top.compareTo(b.rect.top);
        } else {
          return b.rect.bottom.compareTo(a.rect.bottom);
        }
      } else {
        if (first) {
          return a.rect.left.compareTo(b.rect.left);
        } else {
          return b.rect.right.compareTo(a.rect.right);
        }
      }
    });
479

480
    if (sorted.isNotEmpty) {
481
      return sorted.first;
482
    }
483 484

    return null;
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  }

  // Sorts nodes from left to right horizontally, and removes nodes that are
  // either to the right of the left side of the target node if we're going
  // left, or to the left of the right side of the target node if we're going
  // right.
  //
  // This doesn't need to take into account directionality because it is
  // typically intending to actually go left or right, not in a reading
  // direction.
  Iterable<FocusNode> _sortAndFilterHorizontally(
    TraversalDirection direction,
    Rect target,
    FocusNode nearestScope,
  ) {
    assert(direction == TraversalDirection.left || direction == TraversalDirection.right);
501
    final Iterable<FocusNode> nodes = nearestScope.traversalDescendants;
502 503
    assert(!nodes.contains(nearestScope));
    final List<FocusNode> sorted = nodes.toList();
504
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) => a.rect.center.dx.compareTo(b.rect.center.dx));
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    Iterable<FocusNode> result;
    switch (direction) {
      case TraversalDirection.left:
        result = sorted.where((FocusNode node) => node.rect != target && node.rect.center.dx <= target.left);
        break;
      case TraversalDirection.right:
        result = sorted.where((FocusNode node) => node.rect != target && node.rect.center.dx >= target.right);
        break;
      case TraversalDirection.up:
      case TraversalDirection.down:
        break;
    }
    return result;
  }

  // Sorts nodes from top to bottom vertically, and removes nodes that are
  // either below the top of the target node if we're going up, or above the
  // bottom of the target node if we're going down.
  Iterable<FocusNode> _sortAndFilterVertically(
    TraversalDirection direction,
    Rect target,
    Iterable<FocusNode> nodes,
  ) {
    final List<FocusNode> sorted = nodes.toList();
529
    mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) => a.rect.center.dy.compareTo(b.rect.center.dy));
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    switch (direction) {
      case TraversalDirection.up:
        return sorted.where((FocusNode node) => node.rect != target && node.rect.center.dy <= target.top);
      case TraversalDirection.down:
        return sorted.where((FocusNode node) => node.rect != target && node.rect.center.dy >= target.bottom);
      case TraversalDirection.left:
      case TraversalDirection.right:
        break;
    }
    assert(direction == TraversalDirection.up || direction == TraversalDirection.down);
    return null;
  }

  // Updates the policy data to keep the previously visited node so that we can
  // avoid hysteresis when we change directions in navigation.
  //
  // Returns true if focus was requested on a previous node.
  bool _popPolicyDataIfNeeded(TraversalDirection direction, FocusScopeNode nearestScope, FocusNode focusedChild) {
    final _DirectionalPolicyData policyData = _policyData[nearestScope];
    if (policyData != null && policyData.history.isNotEmpty && policyData.history.first.direction != direction) {
550 551 552
      if (policyData.history.last.node.parent == null) {
        // If a node has been removed from the tree, then we should stop
        // referencing it and reset the scope data so that we don't try and
553 554 555
        // request focus on it. This can happen in slivers where the rendered
        // node has been unmounted. This has the side effect that hysteresis
        // might not be avoided when items that go off screen get unmounted.
556 557 558
        invalidateScopeData(nearestScope);
        return false;
      }
559 560 561 562 563 564 565 566 567

      // Returns true if successfully popped the history.
      bool popOrInvalidate(TraversalDirection direction) {
        final FocusNode lastNode = policyData.history.removeLast().node;
        if (Scrollable.of(lastNode.context) != Scrollable.of(primaryFocus.context)) {
          invalidateScopeData(nearestScope);
          return false;
        }
        ScrollPositionAlignmentPolicy alignmentPolicy;
568
        switch (direction) {
569 570 571 572 573 574
          case TraversalDirection.up:
          case TraversalDirection.left:
            alignmentPolicy = ScrollPositionAlignmentPolicy.keepVisibleAtStart;
            break;
          case TraversalDirection.right:
          case TraversalDirection.down:
575
            alignmentPolicy = ScrollPositionAlignmentPolicy.keepVisibleAtEnd;
576 577 578 579 580 581 582 583 584
            break;
        }
        _focusAndEnsureVisible(
          lastNode,
          alignmentPolicy: alignmentPolicy,
        );
        return true;
      }

585 586 587 588 589 590 591 592 593 594 595
      switch (direction) {
        case TraversalDirection.down:
        case TraversalDirection.up:
          switch (policyData.history.first.direction) {
            case TraversalDirection.left:
            case TraversalDirection.right:
              // Reset the policy data if we change directions.
              invalidateScopeData(nearestScope);
              break;
            case TraversalDirection.up:
            case TraversalDirection.down:
596 597 598 599
              if (popOrInvalidate(direction)) {
                return true;
              }
              break;
600 601 602 603 604 605 606
          }
          break;
        case TraversalDirection.left:
        case TraversalDirection.right:
          switch (policyData.history.first.direction) {
            case TraversalDirection.left:
            case TraversalDirection.right:
607 608 609 610
              if (popOrInvalidate(direction)) {
                return true;
              }
              break;
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            case TraversalDirection.up:
            case TraversalDirection.down:
              // Reset the policy data if we change directions.
              invalidateScopeData(nearestScope);
              break;
          }
      }
    }
    if (policyData != null && policyData.history.isEmpty) {
      invalidateScopeData(nearestScope);
    }
    return false;
  }

  void _pushPolicyData(TraversalDirection direction, FocusScopeNode nearestScope, FocusNode focusedChild) {
    final _DirectionalPolicyData policyData = _policyData[nearestScope];
    if (policyData != null && policyData is! _DirectionalPolicyData) {
      return;
    }
    final _DirectionalPolicyDataEntry newEntry = _DirectionalPolicyDataEntry(node: focusedChild, direction: direction);
    if (policyData != null) {
      policyData.history.add(newEntry);
    } else {
      _policyData[nearestScope] = _DirectionalPolicyData(history: <_DirectionalPolicyDataEntry>[newEntry]);
    }
  }

  /// Focuses the next widget in the given [direction] in the [FocusScope] that
  /// contains the [currentNode].
  ///
  /// This determines what the next node to receive focus in the given
  /// [direction] will be by inspecting the node tree, and then calling
  /// [FocusNode.requestFocus] on it.
  ///
  /// Returns true if it successfully found a node and requested focus.
  ///
  /// Maintains a stack of previous locations that have been visited on the
  /// [policyData] for the affected [FocusScopeNode]. If the previous direction
  /// was the opposite of the current direction, then the this policy will
  /// request focus on the previously focused node. Change to another direction
  /// other than the current one or its opposite will clear the stack.
  ///
  /// If this function returns true when called by a subclass, then the subclass
  /// should return true and not request focus from any node.
  @mustCallSuper
  @override
  bool inDirection(FocusNode currentNode, TraversalDirection direction) {
    final FocusScopeNode nearestScope = currentNode.nearestScope;
    final FocusNode focusedChild = nearestScope.focusedChild;
    if (focusedChild == null) {
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
      final FocusNode firstFocus = findFirstFocusInDirection(currentNode, direction) ?? currentNode;
      switch (direction) {
        case TraversalDirection.up:
        case TraversalDirection.left:
          _focusAndEnsureVisible(
            firstFocus,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart,
          );
          break;
        case TraversalDirection.right:
        case TraversalDirection.down:
          _focusAndEnsureVisible(
            firstFocus,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd,
          );
          break;
      }
678 679 680 681 682 683
      return true;
    }
    if (_popPolicyDataIfNeeded(direction, nearestScope, focusedChild)) {
      return true;
    }
    FocusNode found;
684
    final ScrollableState focusedScrollable = Scrollable.of(focusedChild.context);
685 686 687
    switch (direction) {
      case TraversalDirection.down:
      case TraversalDirection.up:
688
        Iterable<FocusNode> eligibleNodes = _sortAndFilterVertically(
689 690
          direction,
          focusedChild.rect,
691
          nearestScope.traversalDescendants,
692
        );
693 694 695 696 697 698
        if (focusedScrollable != null && !focusedScrollable.position.atEdge) {
          final Iterable<FocusNode> filteredEligibleNodes = eligibleNodes.where((FocusNode node) => Scrollable.of(node.context) == focusedScrollable);
          if (filteredEligibleNodes.isNotEmpty) {
            eligibleNodes = filteredEligibleNodes;
          }
        }
699 700 701 702 703 704 705 706 707 708 709
        if (eligibleNodes.isEmpty) {
          break;
        }
        List<FocusNode> sorted = eligibleNodes.toList();
        if (direction == TraversalDirection.up) {
          sorted = sorted.reversed.toList();
        }
        // Find any nodes that intersect the band of the focused child.
        final Rect band = Rect.fromLTRB(focusedChild.rect.left, -double.infinity, focusedChild.rect.right, double.infinity);
        final Iterable<FocusNode> inBand = sorted.where((FocusNode node) => !node.rect.intersect(band).isEmpty);
        if (inBand.isNotEmpty) {
710 711
          // The inBand list is already sorted by horizontal distance, so pick
          // the closest one.
712 713 714
          found = inBand.first;
          break;
        }
715 716 717
        // Only out-of-band targets remain, so pick the one that is closest the
        // to the center line horizontally.
        mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
718 719 720 721 722 723
          return (a.rect.center.dx - focusedChild.rect.center.dx).abs().compareTo((b.rect.center.dx - focusedChild.rect.center.dx).abs());
        });
        found = sorted.first;
        break;
      case TraversalDirection.right:
      case TraversalDirection.left:
724 725 726 727 728 729 730
        Iterable<FocusNode> eligibleNodes = _sortAndFilterHorizontally(direction, focusedChild.rect, nearestScope);
        if (focusedScrollable != null && !focusedScrollable.position.atEdge) {
          final Iterable<FocusNode> filteredEligibleNodes = eligibleNodes.where((FocusNode node) => Scrollable.of(node.context) == focusedScrollable);
          if (filteredEligibleNodes.isNotEmpty) {
            eligibleNodes = filteredEligibleNodes;
          }
        }
731 732 733 734 735 736 737 738 739 740 741
        if (eligibleNodes.isEmpty) {
          break;
        }
        List<FocusNode> sorted = eligibleNodes.toList();
        if (direction == TraversalDirection.left) {
          sorted = sorted.reversed.toList();
        }
        // Find any nodes that intersect the band of the focused child.
        final Rect band = Rect.fromLTRB(-double.infinity, focusedChild.rect.top, double.infinity, focusedChild.rect.bottom);
        final Iterable<FocusNode> inBand = sorted.where((FocusNode node) => !node.rect.intersect(band).isEmpty);
        if (inBand.isNotEmpty) {
742 743
          // The inBand list is already sorted by vertical distance, so pick the
          // closest one.
744 745 746
          found = inBand.first;
          break;
        }
747 748 749
        // Only out-of-band targets remain, so pick the one that is closest the
        // to the center line vertically.
        mergeSort<FocusNode>(sorted, compare: (FocusNode a, FocusNode b) {
750 751 752 753 754 755 756
          return (a.rect.center.dy - focusedChild.rect.center.dy).abs().compareTo((b.rect.center.dy - focusedChild.rect.center.dy).abs());
        });
        found = sorted.first;
        break;
    }
    if (found != null) {
      _pushPolicyData(direction, nearestScope, focusedChild);
757 758 759 760 761 762 763 764 765 766
      switch (direction) {
        case TraversalDirection.up:
        case TraversalDirection.left:
          _focusAndEnsureVisible(
            found,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtStart,
          );
          break;
        case TraversalDirection.down:
        case TraversalDirection.right:
767 768 769 770
          _focusAndEnsureVisible(
            found,
            alignmentPolicy: ScrollPositionAlignmentPolicy.keepVisibleAtEnd,
          );
771 772
          break;
      }
773 774 775 776 777 778 779 780 781 782 783 784 785 786
      return true;
    }
    return false;
  }
}

/// A [FocusTraversalPolicy] that traverses the focus order in widget hierarchy
/// order.
///
/// This policy is used when the order desired is the order in which widgets are
/// created in the widget hierarchy.
///
/// See also:
///
787
///  * [FocusNode], for a description of the focus system.
788 789
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
790 791 792 793
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
794 795 796
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
class WidgetOrderTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
797
  @override
798 799 800 801 802 803 804 805 806 807 808
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants) => descendants;
}

// This class exists mainly for efficiency reasons: the rect is copied out of
// the node, because it will be accessed many times in the reading order
// algorithm, and the FocusNode.rect accessor does coordinate transformation. If
// not for this optimization, it could just be removed, and the node used
// directly.
//
// It's also a convenient place to put some utility functions having to do with
// the sort data.
809
class _ReadingOrderSortData with Diagnosticable {
810 811 812 813 814 815 816 817 818 819 820 821 822
  _ReadingOrderSortData(this.node)
      : assert(node != null),
        rect = node.rect,
        directionality = _findDirectionality(node.context);

  final TextDirection directionality;
  final Rect rect;
  final FocusNode node;

  // Find the directionality in force for a build context without creating a
  // dependency.
  static TextDirection _findDirectionality(BuildContext context) {
    return (context.getElementForInheritedWidgetOfExactType<Directionality>()?.widget as Directionality)?.textDirection;
823
  }
824

825 826 827 828 829 830 831
  /// Finds the common Directional ancestor of an entire list of groups.
  static TextDirection commonDirectionalityOf(List<_ReadingOrderSortData> list) {
    final Iterable<Set<Directionality>> allAncestors = list.map<Set<Directionality>>((_ReadingOrderSortData member) => member.directionalAncestors.toSet());
    Set<Directionality> common;
    for (final Set<Directionality> ancestorSet in allAncestors) {
      common ??= ancestorSet;
      common = common.intersection(ancestorSet);
832
    }
833 834 835 836 837
    if (common.isEmpty) {
      // If there is no common ancestor, then arbitrarily pick the
      // directionality of the first group, which is the equivalent of the "first
      // strongly typed" item in a bidi algorithm.
      return list.first.directionality;
838
    }
839 840 841 842 843 844 845 846 847 848 849 850 851 852
    // Find the closest common ancestor. The memberAncestors list contains the
    // ancestors for all members, but the first member's ancestry was
    // added in order from nearest to furthest, so we can still use that
    // to determine the closest one.
    return list.first.directionalAncestors.firstWhere(common.contains).textDirection;
  }

  static void sortWithDirectionality(List<_ReadingOrderSortData> list, TextDirection directionality) {
    mergeSort<_ReadingOrderSortData>(list, compare: (_ReadingOrderSortData a, _ReadingOrderSortData b) {
      switch (directionality) {
        case TextDirection.ltr:
          return a.rect.left.compareTo(b.rect.left);
        case TextDirection.rtl:
          return b.rect.right.compareTo(a.rect.right);
853
      }
854 855 856 857
      assert(false, 'Unhandled directionality $directionality');
      return 0;
    });
  }
858

859 860 861 862 863 864 865 866 867
  /// Returns the list of Directionality ancestors, in order from nearest to
  /// furthest.
  Iterable<Directionality> get directionalAncestors {
    List<Directionality> getDirectionalityAncestors(BuildContext context) {
      final List<Directionality> result = <Directionality>[];
      InheritedElement directionalityElement = context.getElementForInheritedWidgetOfExactType<Directionality>();
      while (directionalityElement != null) {
        result.add(directionalityElement.widget as Directionality);
        directionalityElement = _getAncestor(directionalityElement)?.getElementForInheritedWidgetOfExactType<Directionality>();
868
      }
869
      return result;
870
    }
871 872 873

    _directionalAncestors ??= getDirectionalityAncestors(node.context);
    return _directionalAncestors;
874 875
  }

876
  List<Directionality> _directionalAncestors;
877 878

  @override
879 880 881 882 883 884
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<TextDirection>('directionality', directionality));
    properties.add(StringProperty('name', node.debugLabel, defaultValue: null));
    properties.add(DiagnosticsProperty<Rect>('rect', rect));
  }
885 886
}

887 888
// A class for containing group data while sorting in reading order while taking
// into account the ambient directionality.
889
class _ReadingOrderDirectionalGroupData with Diagnosticable {
890
  _ReadingOrderDirectionalGroupData(this.members);
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
  final List<_ReadingOrderSortData> members;

  TextDirection get directionality => members.first.directionality;

  Rect _rect;
  Rect get rect {
    if (_rect == null) {
      for (final Rect rect in members.map<Rect>((_ReadingOrderSortData data) => data.rect)) {
        _rect ??= rect;
        _rect = _rect.expandToInclude(rect);
      }
    }
    return _rect;
  }

  List<Directionality> get memberAncestors {
    if (_memberAncestors == null) {
      _memberAncestors = <Directionality>[];
      for (final _ReadingOrderSortData member in members) {
        _memberAncestors.addAll(member.directionalAncestors);
      }
    }
    return _memberAncestors;
  }

  List<Directionality> _memberAncestors;

  static void sortWithDirectionality(List<_ReadingOrderDirectionalGroupData> list, TextDirection directionality) {
    mergeSort<_ReadingOrderDirectionalGroupData>(list, compare: (_ReadingOrderDirectionalGroupData a, _ReadingOrderDirectionalGroupData b) {
      switch (directionality) {
        case TextDirection.ltr:
          return a.rect.left.compareTo(b.rect.left);
        case TextDirection.rtl:
          return b.rect.right.compareTo(a.rect.right);
      }
      assert(false, 'Unhandled directionality $directionality');
      return 0;
    });
  }

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<TextDirection>('directionality', directionality));
    properties.add(DiagnosticsProperty<Rect>('rect', rect));
    properties.add(IterableProperty<String>('members', members.map<String>((_ReadingOrderSortData member) {
      return '"${member.node.debugLabel}"(${member.rect})';
    })));
  }
941 942 943 944 945 946 947 948 949 950 951 952 953
}

/// Traverses the focus order in "reading order".
///
/// By default, reading order traversal goes in the reading direction, and then
/// down, using this algorithm:
///
/// 1. Find the node rectangle that has the highest `top` on the screen.
/// 2. Find any other nodes that intersect the infinite horizontal band defined
///    by the highest rectangle's top and bottom edges.
/// 3. Pick the closest to the beginning of the reading order from among the
///    nodes discovered above.
///
954 955
/// It uses the ambient [Directionality] in the context for the enclosing
/// [FocusTraversalGroup] to determine which direction is "reading order".
956 957 958
///
/// See also:
///
959
///  * [FocusNode], for a description of the focus system.
960 961 962
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
963 964 965
///    creation order to describe the order of traversal.
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
966 967
///  * [OrderedTraversalPolicy], a policy that describes the order
///    explicitly using [FocusTraversalOrder] widgets.
968
class ReadingOrderTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
  // Collects the given candidates into groups by directionality. The candidates
  // have already been sorted as if they all had the directionality of the
  // nearest Directionality ancestor.
  List<_ReadingOrderDirectionalGroupData> _collectDirectionalityGroups(Iterable<_ReadingOrderSortData> candidates) {
    TextDirection currentDirection = candidates.first.directionality;
    List<_ReadingOrderSortData> currentGroup = <_ReadingOrderSortData>[];
    final List<_ReadingOrderDirectionalGroupData> result = <_ReadingOrderDirectionalGroupData>[];
    // Split candidates into runs of the same directionality.
    for (final _ReadingOrderSortData candidate in candidates) {
      if (candidate.directionality == currentDirection) {
        currentGroup.add(candidate);
        continue;
      }
      currentDirection = candidate.directionality;
      result.add(_ReadingOrderDirectionalGroupData(currentGroup));
      currentGroup = <_ReadingOrderSortData>[candidate];
985
    }
986 987 988 989 990 991 992 993 994 995 996
    if (currentGroup.isNotEmpty) {
      result.add(_ReadingOrderDirectionalGroupData(currentGroup));
    }
    // Sort each group separately. Each group has the same directionality.
    for (final _ReadingOrderDirectionalGroupData bandGroup in result) {
      if (bandGroup.members.length == 1) {
        continue; // No need to sort one node.
      }
      _ReadingOrderSortData.sortWithDirectionality(bandGroup.members, bandGroup.directionality);
    }
    return result;
997 998
  }

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
  _ReadingOrderSortData _pickNext(List<_ReadingOrderSortData> candidates) {
    // Find the topmost node by sorting on the top of the rectangles.
    mergeSort<_ReadingOrderSortData>(candidates, compare: (_ReadingOrderSortData a, _ReadingOrderSortData b) => a.rect.top.compareTo(b.rect.top));
    final _ReadingOrderSortData topmost = candidates.first;

    // Find the candidates that are in the same horizontal band as the current one.
    List<_ReadingOrderSortData> inBand(_ReadingOrderSortData current, Iterable<_ReadingOrderSortData> candidates) {
      final Rect band = Rect.fromLTRB(double.negativeInfinity, current.rect.top, double.infinity, current.rect.bottom);
      return candidates.where((_ReadingOrderSortData item) {
        return !item.rect.intersect(band).isEmpty;
      }).toList();
1010 1011
    }

1012 1013 1014 1015 1016 1017 1018
    final List<_ReadingOrderSortData> inBandOfTop = inBand(topmost, candidates);
    // It has to have at least topmost in it if the topmost is not degenerate.
    assert(topmost.rect.isEmpty || inBandOfTop.isNotEmpty);

    // The topmost rect in is in a band by itself, so just return that one.
    if (inBandOfTop.length <= 1) {
      return topmost;
1019 1020
    }

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    // Now that we know there are others in the same band as the topmost, then pick
    // the one at the beginning, depending on the text direction in force.

    // Find out the directionality of the nearest common Directionality
    // ancestor for all nodes. This provides a base directionality to use for
    // the ordering of the groups.
    final TextDirection nearestCommonDirectionality = _ReadingOrderSortData.commonDirectionalityOf(inBandOfTop);

    // Do an initial common-directionality-based sort to get consistent geometric
    // ordering for grouping into directionality groups. It has to use the
    // common directionality to be able to group into sane groups for the
    // given directionality, since rectangles can overlap and give different
    // results for different directionalities.
    _ReadingOrderSortData.sortWithDirectionality(inBandOfTop, nearestCommonDirectionality);

    // Collect the top band into internally sorted groups with shared directionality.
    final List<_ReadingOrderDirectionalGroupData> bandGroups = _collectDirectionalityGroups(inBandOfTop);
    if (bandGroups.length == 1) {
      // There's only one directionality group, so just send back the first
      // one in that group, since it's already sorted.
      return bandGroups.first.members.first;
    }
1043

1044 1045 1046 1047
    // Sort the groups based on the common directionality and bounding boxes.
    _ReadingOrderDirectionalGroupData.sortWithDirectionality(bandGroups, nearestCommonDirectionality);
    return bandGroups.first.members.first;
  }
1048

1049 1050 1051 1052 1053 1054 1055
  // Sorts the list of nodes based on their geometry into the desired reading
  // order based on the directionality of the context for each node.
  @override
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants) {
    assert(descendants != null);
    if (descendants.length <= 1) {
      return descendants;
1056 1057
    }

1058 1059
    final List<_ReadingOrderSortData> data = <_ReadingOrderSortData>[
      for (final FocusNode node in descendants) _ReadingOrderSortData(node),
1060
    ];
1061

1062 1063 1064 1065 1066 1067 1068
    final List<FocusNode> sortedList = <FocusNode>[];
    final List<_ReadingOrderSortData> unplaced = data;

    // Pick the initial widget as the one that is at the beginning of the band
    // of the topmost, or the topmost, if there are no others in its band.
    _ReadingOrderSortData current = _pickNext(unplaced);
    sortedList.add(current.node);
1069 1070
    unplaced.remove(current);

1071 1072 1073
    // Go through each node, picking the next one after eliminating the previous
    // one, since removing the previously picked node will expose a new band in
    // which to choose candidates.
1074
    while (unplaced.isNotEmpty) {
1075
      final _ReadingOrderSortData next = _pickNext(unplaced);
1076
      current = next;
1077
      sortedList.add(current.node);
1078 1079
      unplaced.remove(current);
    }
1080
    return sortedList;
1081
  }
1082
}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/// Base class for all sort orders for [OrderedTraversalPolicy] traversal.
///
/// {@template flutter.widgets.focusorder.comparable}
/// Only orders of the same type are comparable. If a set of widgets in the same
/// [FocusTraversalGroup] contains orders that are not comparable with each other, it
/// will assert, since the ordering between such keys is undefined. To avoid
/// collisions, use a [FocusTraversalGroup] to group similarly ordered widgets
/// together.
///
/// When overriding, [doCompare] must be overridden instead of [compareTo],
/// which calls [doCompare] to do the actual comparison.
/// {@endtemplate}
///
/// See also:
///
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
///    for the [OrderedFocusTraversalPolicy] to use.
///  * [NumericFocusOrder], for a focus order that describes its order with a
///    `double`.
///  * [LexicalFocusOrder], a focus order that assigns a string-based lexical
///    traversal order to a [FocusTraversalOrder] widget.
@immutable
1108
abstract class FocusOrder with Diagnosticable implements Comparable<FocusOrder> {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
  /// Abstract const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const FocusOrder();

  /// Compares this object to another [Comparable].
  ///
  /// When overriding [FocusOrder], implement [doCompare] instead of this
  /// function to do the actual comparison.
  ///
  /// Returns a value like a [Comparator] when comparing `this` to [other].
  /// That is, it returns a negative integer if `this` is ordered before [other],
  /// a positive integer if `this` is ordered after [other],
  /// and zero if `this` and [other] are ordered together.
  ///
  /// The [other] argument must be a value that is comparable to this object.
  @override
  @nonVirtual
  int compareTo(FocusOrder other) {
    assert(
        runtimeType == other.runtimeType,
        "The sorting algorithm must not compare incomparable keys, since they don't "
        'know how to order themselves relative to each other. Comparing $this with $other');
    return doCompare(other);
  }

  /// The subclass implementation called by [compareTo] to compare orders.
  ///
  /// The argument is guaranteed to be of the same [runtimeType] as this object.
  ///
  /// The method should return a negative number if this object comes earlier in
  /// the sort order than the `other` argument; and a positive number if it
  /// comes later in the sort order than `other`. Returning zero causes the
  /// system to fall back to the secondary sort order defined by
  /// [OrderedTraversalPolicy.secondary]
  @protected
  int doCompare(covariant FocusOrder other);
}

/// Can be given to a [FocusTraversalOrder] widget to assign a numerical order
/// to a widget subtree that is using a [OrderedTraversalPolicy] to define the
/// order in which widgets should be traversed with the keyboard.
///
/// {@macro flutter.widgets.focusorder.comparable}
///
/// See also:
///
///  * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
///    for the [OrderedFocusTraversalPolicy] to use.
class NumericFocusOrder extends FocusOrder {
  /// Const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const NumericFocusOrder(this.order) : assert(order != null);

  /// The numerical order to assign to the widget subtree using
  /// [FocusTraversalOrder].
  ///
  /// Determines the placement of this widget in a sequence of widgets that defines
  /// the order in which this node is traversed by the focus policy.
  ///
  /// Lower values will be traversed first.
  final double order;

  @override
  int doCompare(NumericFocusOrder other) => order.compareTo(other.order);

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DoubleProperty('order', order));
  }
}

/// Can be given to a [FocusTraversalOrder] widget to use a String to assign a
/// lexical order to a widget subtree that is using a
/// [OrderedTraversalPolicy] to define the order in which widgets should be
/// traversed with the keyboard.
///
/// This sorts strings using Dart's default string comparison, which is not
/// locale specific.
///
/// {@macro flutter.widgets.focusorder.comparable}
///
/// See also:
///
///  * [FocusTraversalOrder], a widget that assigns an order to a widget subtree
///    for the [OrderedFocusTraversalPolicy] to use.
class LexicalFocusOrder extends FocusOrder {
  /// Const constructor. This constructor enables subclasses to provide
  /// const constructors so that they can be used in const expressions.
  const LexicalFocusOrder(this.order) : assert(order != null);

  /// The String that defines the lexical order to assign to the widget subtree
  /// using [FocusTraversalOrder].
  ///
  /// Determines the placement of this widget in a sequence of widgets that defines
  /// the order in which this node is traversed by the focus policy.
  ///
  /// Lower lexical values will be traversed first (e.g. 'a' comes before 'z').
  final String order;

  @override
  int doCompare(LexicalFocusOrder other) => order.compareTo(other.order);

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(StringProperty('order', order));
  }
}

// Used to help sort the focus nodes in an OrderedFocusTraversalPolicy.
class _OrderedFocusInfo {
  const _OrderedFocusInfo({@required this.node, @required this.order})
      : assert(node != null),
        assert(order != null);

  final FocusNode node;
  final FocusOrder order;
}

/// A [FocusTraversalPolicy] that orders nodes by an explicit order that resides
/// in the nearest [FocusTraversalOrder] widget ancestor.
///
/// {@macro flutter.widgets.focusorder.comparable}
///
/// {@tool dartpad --template=stateless_widget_scaffold_center}
/// This sample shows how to assign a traversal order to a widget. In the
/// example, the focus order goes from bottom right (the "One" button) to top
/// left (the "Six" button).
///
/// ```dart preamble
/// class DemoButton extends StatelessWidget {
///   const DemoButton({this.name, this.autofocus = false, this.order});
///
///   final String name;
///   final bool autofocus;
///   final double order;
///
///   void _handleOnPressed() {
///     print('Button $name pressed.');
///     debugDumpFocusTree();
///   }
///
///   @override
///   Widget build(BuildContext context) {
///     return FocusTraversalOrder(
///       order: NumericFocusOrder(order),
///       child: FlatButton(
///         autofocus: autofocus,
///         focusColor: Colors.red,
///         onPressed: () => _handleOnPressed(),
///         child: Text(name),
///       ),
///     );
///   }
/// }
/// ```
///
/// ```dart
/// Widget build(BuildContext context) {
///   return FocusTraversalGroup(
///     policy: OrderedTraversalPolicy(),
///     child: Column(
///       mainAxisAlignment: MainAxisAlignment.center,
///       children: <Widget>[
///         Row(
///           mainAxisAlignment: MainAxisAlignment.center,
///           children: const <Widget>[
///             DemoButton(name: 'Six', order: 6),
///           ],
///         ),
///         Row(
///           mainAxisAlignment: MainAxisAlignment.center,
///           children: const <Widget>[
///             DemoButton(name: 'Five', order: 5),
///             DemoButton(name: 'Four', order: 4),
///           ],
///         ),
///         Row(
///           mainAxisAlignment: MainAxisAlignment.center,
///           children: const <Widget>[
///             DemoButton(name: 'Three', order: 3),
///             DemoButton(name: 'Two', order: 2),
///             DemoButton(name: 'One', order: 1, autofocus: true),
///           ],
///         ),
///       ],
///     ),
///   );
/// }
1299
/// ```
1300 1301 1302 1303
/// {@end-tool}
///
/// See also:
///
1304 1305 1306
///  * [FocusTraversalGroup], a widget that groups together and imposes a
///    traversal policy on the [Focus] nodes below it in the widget hierarchy.
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [NumericFocusOrder], a focus order that assigns a numeric traversal order
///    to a [FocusTraversalOrder] widget.
///  * [LexicalFocusOrder], a focus order that assigns a string-based lexical
///    traversal order to a [FocusTraversalOrder] widget.
///  * [FocusOrder], an abstract base class for all types of focus traversal
///    orderings.
class OrderedTraversalPolicy extends FocusTraversalPolicy with DirectionalFocusTraversalPolicyMixin {
  /// Constructs a traversal policy that orders widgets for keyboard traversal
  /// based on an explicit order.
  ///
  /// If [secondary] is null, it will default to [ReadingOrderTraversalPolicy].
  OrderedTraversalPolicy({this.secondary});

  /// This is the policy that is used when a node doesn't have an order
  /// assigned, or when multiple nodes have orders which are identical.
  ///
  /// If not set, this defaults to [ReadingOrderTraversalPolicy].
  ///
  /// This policy determines the secondary sorting order of nodes which evaluate
  /// as having an identical order (including those with no order specified).
  ///
  /// Nodes with no order specified will be sorted after nodes with an explicit
  /// order.
  final FocusTraversalPolicy secondary;

  @override
  Iterable<FocusNode> sortDescendants(Iterable<FocusNode> descendants) {
    final FocusTraversalPolicy secondaryPolicy = secondary ?? ReadingOrderTraversalPolicy();
    final Iterable<FocusNode> sortedDescendants = secondaryPolicy.sortDescendants(descendants);
    final List<FocusNode> unordered = <FocusNode>[];
    final List<_OrderedFocusInfo> ordered = <_OrderedFocusInfo>[];
    for (final FocusNode node in sortedDescendants) {
      final FocusOrder order = FocusTraversalOrder.of(node.context, nullOk: true);
      if (order != null) {
        ordered.add(_OrderedFocusInfo(node: node, order: order));
      } else {
        unordered.add(node);
1347
      }
1348
    }
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    mergeSort<_OrderedFocusInfo>(ordered, compare: (_OrderedFocusInfo a, _OrderedFocusInfo b) {
      assert(
        a.order.runtimeType == b.order.runtimeType,
        'When sorting nodes for determining focus order, the order (${a.order}) of '
        "node ${a.node}, isn't the same type as the order (${b.order}) of ${b.node}. "
        "Incompatible order types can't be compared.  Use a FocusTraversalGroup to group "
        'similar orders together.',
      );
      return a.order.compareTo(b.order);
    });
    return ordered.map<FocusNode>((_OrderedFocusInfo info) => info.node).followedBy(unordered);
  }
}
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/// An inherited widget that describes the order in which its child subtree
/// should be traversed.
///
/// {@macro flutter.widgets.focusorder.comparable}
///
/// The order for a widget is determined by the [FocusOrder] returned by
/// [FocusTraversalOrder.of] for a particular context.
class FocusTraversalOrder extends InheritedWidget {
  /// A const constructor so that subclasses can be const.
  const FocusTraversalOrder({Key key, this.order, Widget child}) : super(key: key, child: child);

  /// The order for the widget descendants of this [FocusTraversalOrder].
  final FocusOrder order;

  /// Finds the [FocusOrder] in the nearest ancestor [FocusTraversalOrder] widget.
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
  static FocusOrder of(BuildContext context, {bool nullOk = false}) {
    assert(context != null);
    assert(nullOk != null);
    final FocusTraversalOrder marker = context.getElementForInheritedWidgetOfExactType<FocusTraversalOrder>()?.widget as FocusTraversalOrder;
    final FocusOrder order = marker?.order;
    if (order == null && !nullOk) {
      throw FlutterError('FocusTraversalOrder.of() was called with a context that '
          'does not contain a TraversalOrder widget. No TraversalOrder widget '
          'ancestor could be found starting from the context that was passed to '
          'FocusTraversalOrder.of().\n'
          'The context used was:\n'
          '  $context');
1394
    }
1395
    return order;
1396 1397
  }

1398 1399
  // Since the order of traversal doesn't affect display of anything, we don't
  // need to force a rebuild of anything that depends upon it.
1400
  @override
1401
  bool updateShouldNotify(InheritedWidget oldWidget) => false;
1402 1403

  @override
1404 1405 1406 1407
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<FocusOrder>('order', order));
  }
1408 1409
}

1410 1411 1412 1413 1414 1415 1416
/// A widget that describes the inherited focus policy for focus traversal for
/// its descendants, grouping them into a separate traversal group.
///
/// A traversal group is treated as one entity when sorted by the traversal
/// algorithm, so it can be used to segregate different parts of the widget tree
/// that need to be sorted using different algorithms and/or sort orders when
/// using an [OrderedTraversalPolicy].
1417
///
1418 1419 1420 1421
/// Within the group, it will use the given [policy] to order the elements. The
/// group itself will be ordered using the parent group's policy.
///
/// By default, traverses in reading order using [ReadingOrderTraversalPolicy].
1422
///
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/// {@tool dartpad --template=stateless_widget_material}
/// This sample shows three rows of buttons, each grouped by a
/// [FocusTraversalGroup], each with different traversal order policies. Use tab
/// traversal to see the order they are traversed in.  The first row follows a
/// numerical order, the second follows a lexical order (ordered to traverse
/// right to left), and the third ignores the numerical order assigned to it and
/// traverses in widget order.
///
/// ```dart preamble
/// /// A button wrapper that adds either a numerical or lexical order, depending on
/// /// the type of T.
/// class OrderedButton<T> extends StatefulWidget {
///   const OrderedButton({
///     this.name,
///     this.canRequestFocus = true,
///     this.autofocus = false,
///     this.order,
///   });
///
///   final String name;
///   final bool canRequestFocus;
///   final bool autofocus;
///   final T order;
///
///   @override
///   _OrderedButtonState createState() => _OrderedButtonState();
/// }
///
/// class _OrderedButtonState<T> extends State<OrderedButton<T>> {
///   FocusNode focusNode;
///
///   @override
///   void initState() {
///     super.initState();
///     focusNode = FocusNode(
///       debugLabel: widget.name,
///       canRequestFocus: widget.canRequestFocus,
///     );
///   }
///
///   @override
///   void dispose() {
///     focusNode?.dispose();
///     super.dispose();
///   }
///
///   @override
///   void didUpdateWidget(OrderedButton oldWidget) {
///     super.didUpdateWidget(oldWidget);
///     focusNode.canRequestFocus = widget.canRequestFocus;
///   }
///
///   void _handleOnPressed() {
///     focusNode.requestFocus();
///     print('Button ${widget.name} pressed.');
///     debugDumpFocusTree();
///   }
///
///   @override
///   Widget build(BuildContext context) {
///     FocusOrder order;
///     if (widget.order is num) {
///       order = NumericFocusOrder((widget.order as num).toDouble());
///     } else {
///       order = LexicalFocusOrder(widget.order.toString());
///     }
///
///     return FocusTraversalOrder(
///       order: order,
///       child: Padding(
///         padding: const EdgeInsets.all(8.0),
///         child: OutlineButton(
///           focusNode: focusNode,
///           autofocus: widget.autofocus,
///           focusColor: Colors.red,
///           hoverColor: Colors.blue,
///           onPressed: () => _handleOnPressed(),
///           child: Text(widget.name),
///         ),
///       ),
///     );
///   }
/// }
/// ```
///
/// ```dart
/// Widget build(BuildContext context) {
///   return Container(
///     color: Colors.white,
///     child: FocusTraversalGroup(
///       policy: OrderedTraversalPolicy(),
///       child: Column(
///         mainAxisAlignment: MainAxisAlignment.center,
///         children: <Widget>[
///           // A group that is ordered with a numerical order, from left to right.
///           FocusTraversalGroup(
///             policy: OrderedTraversalPolicy(),
///             child: Row(
///               mainAxisAlignment: MainAxisAlignment.center,
///               children: List<Widget>.generate(3, (int index) {
///                 return OrderedButton<num>(
///                   name: 'num: $index',
///                   // TRY THIS: change this to "3 - index" and see how the order changes.
///                   order: index,
///                 );
///               }),
///             ),
///           ),
///           // A group that is ordered with a lexical order, from right to left.
///           FocusTraversalGroup(
///             policy: OrderedTraversalPolicy(),
///             child: Row(
///               mainAxisAlignment: MainAxisAlignment.center,
///               children: List<Widget>.generate(3, (int index) {
///                 // Order as "C" "B", "A".
///                 String order =
///                     String.fromCharCode('A'.codeUnitAt(0) + (2 - index));
///                 return OrderedButton<String>(
///                   name: 'String: $order',
///                   order: order,
///                 );
///               }),
///             ),
///           ),
///           // A group that orders in widget order, regardless of what the order is set to.
///           FocusTraversalGroup(
///             // Note that because this is NOT an OrderedTraversalPolicy, the
///             // assigned order of these OrderedButtons is ignored, and they
///             // are traversed in widget order. TRY THIS: change this to
///             // "OrderedTraversalPolicy()" and see that it now follows the
///             // numeric order set on them instead of the widget order.
///             policy: WidgetOrderTraversalPolicy(),
///             child: Row(
///               mainAxisAlignment: MainAxisAlignment.center,
///               children: List<Widget>.generate(3, (int index) {
///                 return OrderedButton<num>(
///                   name: 'ignored num: ${3 - index}',
///                   order: 3 - index,
///                 );
///               }),
///             ),
///           ),
///         ],
///       ),
///     ),
///   );
/// }
/// ```
/// {@end-tool}
///
1573 1574
/// See also:
///
1575
///  * [FocusNode], for a description of the focus system.
1576
///  * [WidgetOrderTraversalPolicy], a policy that relies on the widget
1577 1578 1579 1580 1581
///    creation order to describe the order of traversal.
///  * [ReadingOrderTraversalPolicy], a policy that describes the order as the
///    natural "reading order" for the current [Directionality].
///  * [DirectionalFocusTraversalPolicyMixin] a mixin class that implements
///    focus traversal in a direction.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
class FocusTraversalGroup extends StatefulWidget {
  /// Creates a [FocusTraversalGroup] object.
  ///
  /// The [child] argument must not be null.
  FocusTraversalGroup({
    Key key,
    FocusTraversalPolicy policy,
    @required this.child,
  })  : policy = policy ?? ReadingOrderTraversalPolicy(),
        super(key: key);

  /// The child widget of this [FocusTraversalGroup].
  ///
  /// {@macro flutter.widgets.child}
  final Widget child;

  /// The policy used to move the focus from one focus node to another when
  /// traversing them using a keyboard.
  ///
  /// If not specified, traverses in reading order using
  /// [ReadingOrderTraversalPolicy].
  ///
  /// See also:
  ///
  ///  * [FocusTraversalPolicy] for the API used to impose traversal order
  ///    policy.
  ///  * [WidgetOrderTraversalPolicy] for a traversal policy that traverses
  ///    nodes in the order they are added to the widget tree.
  ///  * [ReadingOrderTraversalPolicy] for a traversal policy that traverses
  ///    nodes in the reading order defined in the widget tree, and then top to
  ///    bottom.
  final FocusTraversalPolicy policy;

  /// Returns the focus policy set by the [FocusTraversalGroup] that most
  /// tightly encloses the given [BuildContext].
  ///
  /// It does not create a rebuild dependency because changing the traversal
  /// order doesn't change the widget tree, so nothing needs to be rebuilt as a
  /// result of an order change.
  ///
  /// Will assert if no [FocusTraversalGroup] ancestor is found, and `nullOk` is false.
  ///
  /// If `nullOk` is true, then it will return null if it doesn't find a
  /// [FocusTraversalGroup] ancestor.
  static FocusTraversalPolicy of(BuildContext context, {bool nullOk = false}) {
    assert(context != null);
    final _FocusTraversalGroupMarker inherited = context?.dependOnInheritedWidgetOfExactType<_FocusTraversalGroupMarker>();
    assert(() {
      if (nullOk) {
        return true;
      }
      if (inherited == null) {
        throw FlutterError(
          'Unable to find a FocusTraversalGroup widget in the context.\n'
          'FocusTraversalGroup.of() was called with a context that does not contain a '
          'FocusTraversalGroup.\n'
          'No FocusTraversalGroup ancestor could be found starting from the context that was '
          'passed to FocusTraversalGroup.of(). This can happen because there is not a '
          'WidgetsApp or MaterialApp widget (those widgets introduce a FocusTraversalGroup), '
          'or it can happen if the context comes from a widget above those widgets.\n'
          'The context used was:\n'
          '  $context',
        );
      }
      return true;
    }());
    return inherited?.policy;
  }

  @override
  _FocusTraversalGroupState createState() => _FocusTraversalGroupState();

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<FocusTraversalPolicy>('policy', policy));
  }
}

class _FocusTraversalGroupState extends State<FocusTraversalGroup> {
  // The internal focus node used to collect the children of this node into a
  // group, and to provide a context for the traversal algorithm to sort the
  // group with.
  FocusNode focusNode;

  @override
  void initState() {
    super.initState();
    focusNode = FocusNode(
      canRequestFocus: false,
      skipTraversal: true,
      debugLabel: 'FocusTraversalGroup',
    );
  }

  @override
  void dispose() {
    focusNode?.dispose();
    super.dispose();
  }

  @override
  Widget build(BuildContext context) {
    return _FocusTraversalGroupMarker(
      policy: widget.policy,
      focusNode: focusNode,
      child: Focus(
        focusNode: focusNode,
        canRequestFocus: false,
        skipTraversal: true,
        includeSemantics: false,
        child: widget.child,
      ),
    );
  }
}

// A "marker" inherited widget to make the group faster to find.
class _FocusTraversalGroupMarker extends InheritedWidget {
  const _FocusTraversalGroupMarker({
    @required this.policy,
    @required this.focusNode,
    Widget child,
  })  : assert(policy != null),
        assert(focusNode != null),
        super(child: child);

  final FocusTraversalPolicy policy;
  final FocusNode focusNode;

  @override
  bool updateShouldNotify(InheritedWidget oldWidget) => false;
}

1716 1717 1718 1719 1720 1721 1722
// A base class for all of the default actions that request focus for a node.
class _RequestFocusActionBase extends Action {
  _RequestFocusActionBase(LocalKey name) : super(name);

  FocusNode _previousFocus;

  @override
1723
  void invoke(FocusNode node, Intent intent) {
1724
    _previousFocus = primaryFocus;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    node.requestFocus();
  }

  @override
  void debugFillProperties(DiagnosticPropertiesBuilder properties) {
    super.debugFillProperties(properties);
    properties.add(DiagnosticsProperty<FocusNode>('previous', _previousFocus));
  }
}

/// An [Action] that requests the focus on the node it is invoked on.
///
/// This action can be used to request focus for a particular node, by calling
/// [Action.invoke] like so:
///
/// ```dart
/// Actions.invoke(context, const Intent(RequestFocusAction.key), focusNode: _focusNode);
/// ```
///
/// Where the `_focusNode` is the node for which the focus will be requested.
///
/// The difference between requesting focus in this way versus calling
/// [_focusNode.requestFocus] directly is that it will use the [Action]
/// registered in the nearest [Actions] widget associated with [key] to make the
/// request, rather than just requesting focus directly. This allows the action
/// to have additional side effects, like logging, or undo and redo
/// functionality.
///
/// However, this [RequestFocusAction] is the default action associated with the
/// [key] in the [WidgetsApp], and it simply requests focus and has no side
/// effects.
class RequestFocusAction extends _RequestFocusActionBase {
  /// Creates a [RequestFocusAction] with a fixed [key].
  RequestFocusAction() : super(key);

  /// The [LocalKey] that uniquely identifies this action to an [Intent].
  static const LocalKey key = ValueKey<Type>(RequestFocusAction);

  @override
1764
  void invoke(FocusNode node, Intent intent) => _focusAndEnsureVisible(node);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
}

/// An [Action] that moves the focus to the next focusable node in the focus
/// order.
///
/// This action is the default action registered for the [key], and by default
/// is bound to the [LogicalKeyboardKey.tab] key in the [WidgetsApp].
class NextFocusAction extends _RequestFocusActionBase {
  /// Creates a [NextFocusAction] with a fixed [key];
  NextFocusAction() : super(key);

  /// The [LocalKey] that uniquely identifies this action to an [Intent].
  static const LocalKey key = ValueKey<Type>(NextFocusAction);

  @override
1780
  void invoke(FocusNode node, Intent intent) => node.nextFocus();
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
}

/// An [Action] that moves the focus to the previous focusable node in the focus
/// order.
///
/// This action is the default action registered for the [key], and by default
/// is bound to a combination of the [LogicalKeyboardKey.tab] key and the
/// [LogicalKeyboardKey.shift] key in the [WidgetsApp].
class PreviousFocusAction extends _RequestFocusActionBase {
  /// Creates a [PreviousFocusAction] with a fixed [key];
  PreviousFocusAction() : super(key);

  /// The [LocalKey] that uniquely identifies this action to an [Intent].
  static const LocalKey key = ValueKey<Type>(PreviousFocusAction);

  @override
1797
  void invoke(FocusNode node, Intent intent) => node.previousFocus();
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/// An [Intent] that represents moving to the next focusable node in the given
/// [direction].
///
/// This is the [Intent] bound by default to the [LogicalKeyboardKey.arrowUp],
/// [LogicalKeyboardKey.arrowDown], [LogicalKeyboardKey.arrowLeft], and
/// [LogicalKeyboardKey.arrowRight] keys in the [WidgetsApp], with the
/// appropriate associated directions.
class DirectionalFocusIntent extends Intent {
  /// Creates a [DirectionalFocusIntent] with a fixed [key], and the given
  /// [direction].
1810
  const DirectionalFocusIntent(this.direction, {this.ignoreTextFields = true})
1811 1812
      : assert(ignoreTextFields != null),
        super(DirectionalFocusAction.key);
1813 1814 1815 1816

  /// The direction in which to look for the next focusable node when the
  /// associated [DirectionalFocusAction] is invoked.
  final TraversalDirection direction;
1817 1818 1819 1820 1821 1822 1823

  /// If true, then directional focus actions that occur within a text field
  /// will not happen when the focus node which received the key is a text
  /// field.
  ///
  /// Defaults to true.
  final bool ignoreTextFields;
1824 1825
}

1826 1827
/// An [Action] that moves the focus to the focusable node in the direction
/// configured by the associated [DirectionalFocusIntent.direction].
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
///
/// This is the [Action] associated with the [key] and bound by default to the
/// [LogicalKeyboardKey.arrowUp], [LogicalKeyboardKey.arrowDown],
/// [LogicalKeyboardKey.arrowLeft], and [LogicalKeyboardKey.arrowRight] keys in
/// the [WidgetsApp], with the appropriate associated directions.
class DirectionalFocusAction extends _RequestFocusActionBase {
  /// Creates a [DirectionalFocusAction] with a fixed [key];
  DirectionalFocusAction() : super(key);

  /// The [LocalKey] that uniquely identifies this action to [DirectionalFocusIntent].
  static const LocalKey key = ValueKey<Type>(DirectionalFocusAction);

  @override
1841 1842 1843 1844
  void invoke(FocusNode node, DirectionalFocusIntent intent) {
    if (!intent.ignoreTextFields || node.context.widget is! EditableText) {
      node.focusInDirection(intent.direction);
    }
1845 1846
  }
}