ab.dart 10.6 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

import 'dart:math' as math;
import 'package:meta/meta.dart';

8 9 10 11 12 13 14 15 16 17 18 19 20 21
const String kBenchmarkTypeKeyName = 'benchmark_type';
const String kBenchmarkVersionKeyName = 'version';
const String kLocalEngineKeyName = 'local_engine';
const String kTaskNameKeyName = 'task_name';
const String kRunStartKeyName = 'run_start';
const String kRunEndKeyName = 'run_end';
const String kAResultsKeyName = 'default_results';
const String kBResultsKeyName = 'local_engine_results';

const String kBenchmarkResultsType = 'A/B summaries';
const String kBenchmarkABVersion = '1.0';

enum FieldJustification { LEFT, RIGHT, CENTER }

22 23 24 25
/// Collects data from an A/B test and produces a summary for human evaluation.
///
/// See [printSummary] for more.
class ABTest {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  ABTest(this.localEngine, this.taskName)
      : runStart = DateTime.now(),
        _aResults = <String, List<double>>{},
        _bResults = <String, List<double>>{};

  ABTest.fromJsonMap(Map<String, dynamic> jsonResults)
      : localEngine = jsonResults[kLocalEngineKeyName] as String,
        taskName = jsonResults[kTaskNameKeyName] as String,
        runStart = DateTime.parse(jsonResults[kRunStartKeyName] as String),
        _runEnd = DateTime.parse(jsonResults[kRunEndKeyName] as String),
        _aResults = _convertFrom(jsonResults[kAResultsKeyName] as Map<String, dynamic>),
        _bResults = _convertFrom(jsonResults[kBResultsKeyName] as Map<String, dynamic>);

  final String localEngine;
  final String taskName;
  final DateTime runStart;
  DateTime _runEnd;
  DateTime get runEnd => _runEnd;

  final Map<String, List<double>> _aResults;
  final Map<String, List<double>> _bResults;

  static Map<String, List<double>> _convertFrom(dynamic results) {
    final Map<String, dynamic> resultMap = results as Map<String, dynamic>;
    return <String, List<double>> {
      for (String key in resultMap.keys)
        key: (resultMap[key] as List<dynamic>).cast<double>()
    };
  }
55 56 57 58 59 60 61

  /// Adds the result of a single A run of the benchmark.
  ///
  /// The result may contain multiple score keys.
  ///
  /// [result] is expected to be a serialization of [TaskResult].
  void addAResult(Map<String, dynamic> result) {
62 63 64
    if (_runEnd != null) {
      throw StateError('Cannot add results to ABTest after it is finalized');
    }
65 66 67 68 69 70 71 72 73
    _addResult(result, _aResults);
  }

  /// Adds the result of a single B run of the benchmark.
  ///
  /// The result may contain multiple score keys.
  ///
  /// [result] is expected to be a serialization of [TaskResult].
  void addBResult(Map<String, dynamic> result) {
74 75 76
    if (_runEnd != null) {
      throw StateError('Cannot add results to ABTest after it is finalized');
    }
77 78 79
    _addResult(result, _bResults);
  }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  void finalize() {
    _runEnd = DateTime.now();
  }

  Map<String, dynamic> get jsonMap => <String, dynamic>{
    kBenchmarkTypeKeyName:     kBenchmarkResultsType,
    kBenchmarkVersionKeyName:  kBenchmarkABVersion,
    kLocalEngineKeyName:       localEngine,
    kTaskNameKeyName:          taskName,
    kRunStartKeyName:          runStart.toIso8601String(),
    kRunEndKeyName:            runEnd.toIso8601String(),
    kAResultsKeyName:          _aResults,
    kBResultsKeyName:          _bResults,
  };

  static void updateColumnLengths(List<int> lengths, List<String> results) {
    for (int column = 0; column < lengths.length; column++) {
      if (results[column] != null) {
        lengths[column] = math.max(lengths[column], results[column].length);
      }
    }
  }

  static void formatResult(StringBuffer buffer,
                           List<int> lengths,
                           List<FieldJustification> aligns,
                           List<String> values) {
    for (int column = 0; column < lengths.length; column++) {
      final int len = lengths[column];
      String value = values[column];
      if (value == null) {
        value = ''.padRight(len);
      } else {
        switch (aligns[column]) {
          case FieldJustification.LEFT:
            value = value.padRight(len);
            break;
          case FieldJustification.RIGHT:
            value = value.padLeft(len);
            break;
          case FieldJustification.CENTER:
            value = value.padLeft((len + value.length) ~/2);
            value = value.padRight(len);
            break;
        }
      }
      if (column > 0) {
        value = value.padLeft(len+1);
      }
      buffer.write(value);
    }
    buffer.writeln();
  }

  /// Returns the summary as a tab-separated spreadsheet.
  ///
  /// This value can be copied straight to a Google Spreadsheet for further analysis.
  String asciiSummary() {
    final Map<String, _ScoreSummary> summariesA = _summarize(_aResults);
    final Map<String, _ScoreSummary> summariesB = _summarize(_bResults);

    final List<List<String>> tableRows = <List<String>>[
      for (final String scoreKey in <String>{...summariesA.keys, ...summariesB.keys})
        <String>[
          scoreKey,
          summariesA[scoreKey]?.averageString, summariesA[scoreKey]?.noiseString,
          summariesB[scoreKey]?.averageString, summariesB[scoreKey]?.noiseString,
          summariesA[scoreKey]?.improvementOver(summariesB[scoreKey]),
        ],
    ];

    final List<String> titles = <String>[
      'Score',
      'Average A', '(noise)',
      'Average B', '(noise)',
      'Speed-up'
    ];
    final List<FieldJustification> alignments = <FieldJustification>[
      FieldJustification.LEFT,
      FieldJustification.RIGHT, FieldJustification.LEFT,
      FieldJustification.RIGHT, FieldJustification.LEFT,
      FieldJustification.CENTER
    ];

    final List<int> lengths = List<int>.filled(6, 0);
    updateColumnLengths(lengths, titles);
    for (final List<String> row in tableRows) {
      updateColumnLengths(lengths, row);
    }

    final StringBuffer buffer = StringBuffer();
    formatResult(buffer, lengths,
        <FieldJustification>[
          FieldJustification.CENTER,
          ...alignments.skip(1),
        ], titles);
    for (final List<String> row in tableRows) {
      formatResult(buffer, lengths, alignments, row);
    }

    return buffer.toString();
  }

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  /// Returns unprocessed data collected by the A/B test formatted as
  /// a tab-separated spreadsheet.
  String rawResults() {
    final StringBuffer buffer = StringBuffer();
    for (final String scoreKey in _allScoreKeys) {
      buffer.writeln('$scoreKey:');
      buffer.write('  A:\t');
      if (_aResults.containsKey(scoreKey)) {
        for (final double score in _aResults[scoreKey]) {
          buffer.write('${score.toStringAsFixed(2)}\t');
        }
      } else {
        buffer.write('N/A');
      }
      buffer.writeln();

      buffer.write('  B:\t');
      if (_bResults.containsKey(scoreKey)) {
        for (final double score in _bResults[scoreKey]) {
          buffer.write('${score.toStringAsFixed(2)}\t');
        }
      } else {
        buffer.write('N/A');
      }
      buffer.writeln();
    }
    return buffer.toString();
  }

  Set<String> get _allScoreKeys {
    return <String>{
      ..._aResults.keys,
      ..._bResults.keys,
    };
  }

219 220 221 222 223 224 225 226 227 228 229
  /// Returns the summary as a tab-separated spreadsheet.
  ///
  /// This value can be copied straight to a Google Spreadsheet for further analysis.
  String printSummary() {
    final Map<String, _ScoreSummary> summariesA = _summarize(_aResults);
    final Map<String, _ScoreSummary> summariesB = _summarize(_bResults);

    final StringBuffer buffer = StringBuffer(
      'Score\tAverage A (noise)\tAverage B (noise)\tSpeed-up\n',
    );

230
    for (final String scoreKey in _allScoreKeys) {
231 232 233 234 235
      final _ScoreSummary summaryA = summariesA[scoreKey];
      final _ScoreSummary summaryB = summariesB[scoreKey];
      buffer.write('$scoreKey\t');

      if (summaryA != null) {
236
        buffer.write('${summaryA.averageString} ${summaryA.noiseString}\t');
237 238 239 240 241
      } else {
        buffer.write('\t');
      }

      if (summaryB != null) {
242
        buffer.write('${summaryB.averageString} ${summaryB.noiseString}\t');
243 244 245 246 247
      } else {
        buffer.write('\t');
      }

      if (summaryA != null && summaryB != null) {
248
        buffer.write('${summaryA.improvementOver(summaryB)}\t');
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      }

      buffer.writeln();
    }

    return buffer.toString();
  }
}

class _ScoreSummary {
  _ScoreSummary({
    @required this.average,
    @required this.noise,
  });

  /// Average (arithmetic mean) of a series of values collected by a benchmark.
  final double average;

  /// The noise (standard deviation divided by [average]) in the collected
  /// values.
  final double noise;
270 271 272 273 274 275 276

  String get averageString => average.toStringAsFixed(2);
  String get noiseString => '(${_ratioToPercent(noise)})';

  String improvementOver(_ScoreSummary other) {
    return other == null ? '' : '${(average / other.average).toStringAsFixed(2)}x';
  }
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
}

void _addResult(Map<String, dynamic> result, Map<String, List<double>> results) {
  final List<String> scoreKeys = (result['benchmarkScoreKeys'] as List<dynamic>).cast<String>();
  final Map<String, dynamic> data = result['data'] as Map<String, dynamic>;
  for (final String scoreKey in scoreKeys) {
    final double score = (data[scoreKey] as num).toDouble();
    results.putIfAbsent(scoreKey, () => <double>[]).add(score);
  }
}

Map<String, _ScoreSummary> _summarize(Map<String, List<double>> results) {
  return results.map<String, _ScoreSummary>((String scoreKey, List<double> values) {
    final double average = _computeAverage(values);
    return MapEntry<String, _ScoreSummary>(scoreKey, _ScoreSummary(
      average: average,
      // If the average is zero, the benchmark got the perfect score with no noise.
      noise: average > 0
        ? _computeStandardDeviationForPopulation(values) / average
        : 0.0,
    ));
  });
}

/// Computes the arithmetic mean (or average) of given [values].
double _computeAverage(Iterable<double> values) {
  final double sum = values.reduce((double a, double b) => a + b);
  return sum / values.length;
}

/// Computes population standard deviation.
///
/// Unlike sample standard deviation, which divides by N - 1, this divides by N.
///
/// See also:
///
/// * https://en.wikipedia.org/wiki/Standard_deviation
double _computeStandardDeviationForPopulation(Iterable<double> population) {
  final double mean = _computeAverage(population);
  final double sumOfSquaredDeltas = population.fold<double>(
    0.0,
    (double previous, num value) => previous += math.pow(value - mean, 2),
  );
  return math.sqrt(sumOfSquaredDeltas / population.length);
}

String _ratioToPercent(double value) {
  return '${(value * 100).toStringAsFixed(2)}%';
}