
Your First GPU Kernel
Last updated on 2024-11-19 | Edit this page 

Summing Two Vectors in Python
We start by introducing a program that, given two input vectors of the same size, stores the sum of the corresponding elements of the two
input vectors into a third one.

One of the characteristics of this program is that each iteration of the for loop is independent from the other iterations. In other words, we
could reorder the iterations and still produce the same output, or even compute each iteration in parallel or on a different device, and still come
up with the same output. These are the kind of programs that we would call naturally parallel, and they are perfect candidates for being
executed on a GPU.

Summing Two Vectors in CUDA
While we could just use CuPy to run something equivalent to our vector_add on a GPU, our goal is to learn how to write code that can be
executed by GPUs, therefore we now begin learning CUDA.

The CUDA-C language is a GPU programming language and API developed by NVIDIA. It is mostly equivalent to C/C++, with some special
keywords, built-in variables, and functions.

We begin our introduction to CUDA by writing a small kernel, i.e. a GPU program, that computes the same function that we just described in
Python.

OVERVIEW

Questions

“How can I parallelize a Python application on a GPU?”

“How to write a GPU program?”

“What is CUDA?”

Objectives

“Recognize possible data parallelism in Python code”

“Understand the structure of a CUDA program”

“Execute a CUDA program in Python using CuPy”

“Measure the execution time of a CUDA kernel with CuPy”

def vector_add(A, B, C, size):
    for item in range(0, size):
        C[item] = A[item] + B[item]

PYTHON

GPU Programming

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 1/14

https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/first_program.Rmd
https://github.com/carpentries-incubator/lesson-gpu-programming/edit/main/episodes/first_program.Rmd


We are aware that CUDA is a proprietary solution, and that there are open-source alternatives such as OpenCL. However, CUDA is
the most used platform for GPU programming and therefore we decided to use it for our teaching material.

Running Code on the GPU with CuPy
Before delving deeper into the meaning of all lines of code, and before starting to understand how CUDA works, let us execute the code on a
GPU and check if it is correct or not. To compile the code and manage the GPU in Python we are going to use the interface provided by CuPy.

And to be sure that the CUDA code does exactly what we want, we can execute our sequential Python code and compare the results.

extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
    int item = threadIdx.x;
    C[item] = A[item] + B[item];
}

C

CALLOUT

import cupy

# size of the vectors
size = 1024

# allocating and populating the vectors
a_gpu = cupy.random.rand(size, dtype=cupy.float32)
b_gpu = cupy.random.rand(size, dtype=cupy.float32)
c_gpu = cupy.zeros(size, dtype=cupy.float32)

# CUDA vector_add
vector_add_cuda_code = r'''
extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
    int item = threadIdx.x;
    C[item] = A[item] + B[item];
}
'''
vector_add_gpu = cupy.RawKernel(vector_add_cuda_code, "vector_add")

vector_add_gpu((1, 1, 1), (size, 1, 1), (a_gpu, b_gpu, c_gpu, size))

PYTHON

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 2/14



Understanding the CUDA Code
We can now move back to the CUDA code and analyze it line by line to highlight the differences between CUDA-C and standard C.

This is the definition of our CUDA vector_add function. The __global__ keyword is an execution space identifier, and it is specific to CUDA.
What this keyword means is that the defined function will be able to run on the GPU, but can also be called from the host (in our case the
Python interpreter running on the CPU). All of our kernel definitions will be preceded by this keyword.

Other execution space identifiers in CUDA-C are __host__, and __device__. Functions annotated with the __host__ identifier will run on the
host, and be only callable from the host, while functions annotated with the __device__ identifier will run on the GPU, but can only be called
from the GPU itself. We are not going to use these identifiers as often as __global__.

The following table offers a recapitulation of the keywords we just introduced.

Keyword Description

__global__ the function is visible to the host and the GPU, and runs on the GPU

__host__ the function is visible only to the host, and runs on the host

__device__ the function is visible only to the GPU, and runs on the GPU

The following is the part of the code in which we do the actual work.

As you may see, it looks similar to the innermost loop of our vector_add Python function, with the main difference being in how the value of
the item variable is evaluated.

In fact, while in Python the content of item is the result of the range function, in CUDA we are reading a special variable, i.e. threadIdx,
containing a triplet that indicates the id of a thread inside a three-dimensional CUDA block. In this particular case we are working on a one
dimensional vector, and therefore only interested in the first dimension, that is stored in the x field of this variable.

import numpy as np

a_cpu = cupy.asnumpy(a_gpu)
b_cpu = cupy.asnumpy(b_gpu)
c_cpu = np.zeros(size, dtype=np.float32)

vector_add(a_cpu, b_cpu, c_cpu, size)

# test
if np.allclose(c_cpu, c_gpu):
    print("Correct results!")

PYTHON

Correct results!

OUTPUT

__global__ void vector_add(const float * A, const float * B, float * C, const int size)

C

int item = threadIdx.x;
C[item] = A[item] + B[item];

C

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 3/14



We know enough now to pause for a moment and do a little exercise. Assume that in our vector_add kernel we replace the following
line:

With this other line of code:

What will the result of this change be?

1. Nothing changes

2. Only the first thread is working

3. Only C[1] is written

4. All elements of C are zero

Solution

The correct answer is number 3, only the element C[1] is written, and we do not even know by which thread!

Computing Hierarchy in CUDA
In the previous example we had a small vector of size 1024, and each of the 1024 threads we generated was working on one of the element.

What would happen if we changed the size of the vector to a larger number, such as 2048? We modify the value of the variable size and try
again.

CHALLENGE: LOOSE THREADS

int item = threadIdx.x;

C

int item = 1;

C

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 4/14



This is how the output should look like when running the code in a Jupyter Notebook:

The reason for this error is that most GPUs will not allow us to execute a block composed of more than 1024 threads. If we look at the
parameters of our functions we see that the first two parameters are two triplets.

# size of the vectors
size = 2048

# allocating and populating the vectors
a_gpu = cupy.random.rand(size, dtype=cupy.float32)
b_gpu = cupy.random.rand(size, dtype=cupy.float32)
c_gpu = cupy.zeros(size, dtype=cupy.float32)

# CUDA vector_add
vector_add_gpu = cupy.RawKernel(r'''
extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
    int item = threadIdx.x;
    C[item] = A[item] + B[item];
}
''', "vector_add")

vector_add_gpu((1, 1, 1), (size, 1, 1), (a_gpu, b_gpu, c_gpu, size))

PYTHON

---------------------------------------------------------------------------

CUDADriverError                           Traceback (most recent call last)

<ipython-input-4-a26bc8acad2fin <module>()
     19 ''', "vector_add")
     20
---21 vector_add_gpu((1, 1, 1), (size, 1, 1), (a_gpu, b_gpu, c_gpu, size))
     22
     23 print(c_gpu)

cupy/core/raw.pyx in cupy.core.raw.RawKernel.__call__()

cupy/cuda/function.pyx in cupy.cuda.function.Function.__call__()

cupy/cuda/function.pyx in cupy.cuda.function._launch()

cupy_backends/cuda/api/driver.pyx in cupy_backends.cuda.api.driver.launchKernel()

cupy_backends/cuda/api/driver.pyx in cupy_backends.cuda.api.driver.check_status()

CUDADriverError: CUDA_ERROR_INVALID_VALUE: invalid argument

OUTPUT

vector_add_gpu((1, 1, 1), (size, 1, 1), (a_gpu, b_gpu, c_gpu, size))

PYTHON

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 5/14



The first triplet specifies the size of the CUDA grid, while the second triplet specifies the size of the CUDA block. The grid is a three-
dimensional structure in the CUDA programming model and it represent the organization of a whole kernel execution. A grid is made of one or
more independent blocks, and in the case of our previous snippet of code we have a grid composed by a single block (1, 1, 1). The size of
this block is specified by the second triplet, in our case (size, 1, 1). While blocks are independent of each other, the thread composing a
block are not completely independent, they share resources and can also communicate with each other.

To go back to our example, we can modify che grid specification from (1, 1, 1) to (2, 1, 1), and the block specification from (size, 1, 1)
to (size // 2, 1, 1). If we run the code again, we should now get the expected output.

We already introduced the special variable threadIdx when introducing the vector_add CUDA code, and we said it contains a triplet
specifying the coordinates of a thread in a thread block. CUDA has other variables that are important to understand the coordinates of each
thread and block in the overall structure of the computation.

These special variables are blockDim, blockIdx, and gridDim, and they are all triplets. The triplet contained in blockDim represents the size of
the calling thread’s block in three dimensions. While the content of threadIdx is different for each thread in the same block, the content of
blockDim is the same because the size of the block is the same for all threads. The coordinates of a block in the computational grid are
contained in blockIdx, therefore the content of this variable will be the same for all threads in the same block, but different for threads in
different blocks. Finally, gridDim contains the size of the grid in three dimensions, and it is again the same for all threads.

The following table offers a recapitulation of the keywords we just introduced.

Keyword Description

threadIdx the ID of a thread in a block

blockDim the size of a block, i.e. the number of threads per dimension

blockIdx the ID of a block in the grid

gridDim the size of the grid, i.e. the number of blocks per dimension

Given the following snippet of code:

What is the content of the blockDim and gridDim variables inside the CUDA vector_add kernel?

Solution

The content of blockDim is (512, 1, 1) and the content of gridDim is (4, 1, 1), for all threads.

What happens if we run the code that we just modified to work on an vector of 2048 elements, and compare the results with our CPU version?

CHALLENGE: HIDDEN VARIABLES

size = 512
vector_add_gpu((4, 1, 1), (size, 1, 1), (a_gpu, b_gpu, c_gpu, size))

PYTHON

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 6/14



The results are wrong! In fact, while we increased the number of threads we launch, we did not modify the kernel code to compute the correct
results using the new builtin variables we just introduced.

# size of the vectors
size = 2048

# allocating and populating the vectors
a_gpu = cupy.random.rand(size, dtype=cupy.float32)
b_gpu = cupy.random.rand(size, dtype=cupy.float32)
c_gpu = cupy.zeros(size, dtype=cupy.float32)
a_cpu = cupy.asnumpy(a_gpu)
b_cpu = cupy.asnumpy(b_gpu)
c_cpu = np.zeros(size, dtype=np.float32)

# CPU code
def vector_add(A, B, C, size):
    for item in range(0, size):
        C[item] = A[item] + B[item]

# CUDA vector_add
vector_add_gpu = cupy.RawKernel(r'''
extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
    int item = threadIdx.x;
    C[item] = A[item] + B[item];
}
''', "vector_add")

# execute the code
vector_add_gpu((2, 1, 1), (size // 2, 1, 1), (a_gpu, b_gpu, c_gpu, size))
vector_add(a_cpu, b_cpu, c_cpu, size)

# test
if np.allclose(c_cpu, c_gpu):
    print("Correct results!")
else:
    print("Wrong results!")

PYTHON

Wrong results!

OUTPUT

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 7/14



In the following code, fill in the blank to work with vectors that are larger than the largest CUDA block (i.e. 1024).

Solution

The correct answer is (blockIdx.x * blockDim.x) + threadIdx.x. The following code is the complete vector_add that can work
with vectors larger than 1024 elements.

Vectors of Arbitrary Size
So far we have worked with a number of threads that is the same as the elements in the vector. However, in a real world scenario we may
have to process vectors of arbitrary size, and to do this we need to modify both the kernel and the way it is launched.

CHALLENGE: SCALING UP

extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
   int item = ______________;
   C[item] = A[item] + B[item];
}

C

extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
   int item = (blockIdx.x * blockDim.x) + threadIdx.x;
   C[item] = A[item] + B[item];
}

C

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 8/14



We modified the vector_add kernel to include a check for the size of the vector, so that we only compute elements that are within the
vector boundaries. However the code is not correct as it is written now. Can you rewrite the code to make it work?

Solution

The correct way to modify the vector_add to work on vectors of arbitrary size is to first compute the coordinates of each thread, and
then perform the sum only on elements that are within the vector boundaries, as shown in the following snippet of code.

To test our changes we can modify the size of the vectors from 2048 to 10000, and execute the code again.

CHALLENGE: MORE WORK THAN NECESSARY

extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
   if ( item < size )
   {
      int item = (blockIdx.x * blockDim.x) + threadIdx.x;
   }
   C[item] = A[item] + B[item];
}

C

extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
   int item = (blockIdx.x * blockDim.x) + threadIdx.x;
   if ( item < size )
   {
      C[item] = A[item] + B[item];
   }
}

C

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 9/14



This error is telling us that CUDA cannot launch a block with size // 2 threads, because the maximum amount of threads in a kernel is 1024
and we are requesting 5000 threads.

What we need to do is to make grid and block more flexible, so that they can adapt to vectors of arbitrary size. To do that, we can replace the
Python code to call vector_add_gpu with the following code.

With these changes we always have blocks composed of 1024 threads, but we adapt the number of blocks so that we always have enough to
threads to compute all elements in the vector. If we want to be able to easily modify the number of threads per block, we can even rewrite the
code like the following:

So putting this all together in a full snippet we can execute the code again.

---------------------------------------------------------------------------

CUDADriverError                           Traceback (most recent call last)

<ipython-input-20-00d938215d28in <module>()
     31
     32 # Execute the code
---33 vector_add_gpu((2, 1, 1), (size // 2, 1, 1), (a_gpu, b_gpu, c_gpu, size))
     34 vector_add(a_cpu, b_cpu, c_cpu, size)
     35

cupy/core/raw.pyx in cupy.core.raw.RawKernel.__call__()

cupy/cuda/function.pyx in cupy.cuda.function.Function.__call__()

cupy/cuda/function.pyx in cupy.cuda.function._launch()

cupy/cuda/driver.pyx in cupy.cuda.driver.launchKernel()

cupy/cuda/driver.pyx in cupy.cuda.driver.check_status()

CUDADriverError: CUDA_ERROR_INVALID_VALUE: invalid argument

OUTPUT

import math

grid_size = (int(math.ceil(size / 1024)), 1, 1)
block_size = (1024, 1, 1)

vector_add_gpu(grid_size, block_size, (a_gpu, b_gpu, c_gpu, size))

PYTHON

threads_per_block = 1024
grid_size = (int(math.ceil(size / threads_per_block)), 1, 1)
block_size = (threads_per_block, 1, 1)

vector_add_gpu(grid_size, block_size, (a_gpu, b_gpu, c_gpu, size))

PYTHON

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 10/14



vector_add_cuda_code = r'''
extern "C"
__global__ void vector_add(const float * A, const float * B, float * C, const int size)
{
   int item = (blockIdx.x * blockDim.x) + threadIdx.x;
   if ( item < size )
   {
      C[item] = A[item] + B[item];
   }
}
'''
vector_add_gpu = cupy.RawKernel(vector_add_cuda_code, "vector_add")

threads_per_block = 1024
grid_size = (int(math.ceil(size / threads_per_block)), 1, 1)
block_size = (threads_per_block, 1, 1)

vector_add_gpu(grid_size, block_size, (a_gpu, b_gpu, c_gpu, size))

if np.allclose(c_cpu, c_gpu):
    print("Correct results!")
else:
    print("Wrong results!")

PYTHON

Correct results!

OUTPUT

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 11/14



Given the following Python code, similar to what we have seen in the previous episode about Numba, write the missing CUDA kernel
that computes all the prime numbers up to a certain upper bound.

CHALLENGE: COMPUTE PRIME NUMBERS WITH CUDA

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 12/14



import numpy as np
import cupy
import math
from cupyx.profiler import benchmark

# CPU version
def all_primes_to(upper : int, prime_list : list):
    for num in range(0, upper):
        prime = True
        for i in range(2, (num // 2) + 1):
            if (num % i) == 0:
                prime = False
                break
        if prime:
            prime_list[num] = 1

upper_bound = 100_000
all_primes_cpu = np.zeros(upper_bound, dtype=np.int32)

# GPU version
check_prime_gpu_code = r'''
extern "C"
__global__ void all_primes_to(int size, int * const all_prime_numbers)
{
   for ( int number = 0; number < size; number++ )
   {
       int result = 1;
       for ( int factor = 2; factor <= number / 2; factor++ )
       {
           if ( number % factor == 0 )
           {
               result = 0;
               break;
           }
       }
>
       all_prime_numbers[number] = result;
   }
}
'''
# Allocate memory
all_primes_gpu = cupy.zeros(upper_bound, dtype=cupy.int32)

# Setup the grid
all_primes_to_gpu = cupy.RawKernel(check_prime_gpu_code, "all_primes_to")
grid_size = (int(math.ceil(upper_bound / 1024)), 1, 1)
block_size = (1024, 1, 1)

# Benchmark and test
%timeit -n 1 -r 1 all_primes_to(upper_bound, all_primes_cpu)
execution_gpu = benchmark(all_primes_to_gpu, (grid_size, block_size, (upper_bound, all_primes_gpu)), n_repeat=10)
gpu_avg_time = np.average(execution_gpu.gpu_times)
print(f"{gpu_avg_time:.6f} s")
>
if np.allclose(all_primes_cpu, all_primes_gpu):
    print("Correct results!")

PYTHON

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 13/14



There is no need to modify anything in the code, except the body of the CUDA all_primes_to inside the check_prime_gpu_code
string, as we did in the examples so far.

Be aware that the provided CUDA code is a direct port of the Python code, and therefore very slow. If you want to test it, user a lower
value for upper_bound.

Solution

One possible solution for the CUDA kernel is provided in the following code.

The outermost loop in Python is replaced by having each thread testing for primeness a different number of the sequence. Having one
number assigned to each thread via its ID, the kernel implements the innermost loop the same way it is implemented in Python.

“Precede your kernel definition with the __global__ keyword”

“Use built-in variables threadIdx, blockIdx, gridDim and blockDim to identify each thread”

else:
    print("Wrong results!")

extern "C"
__global__ void all_primes_to(int size, int * const all_prime_numbers)
{
    int number = (blockIdx.x * blockDim.x) + threadIdx.x;
    int result = 1;

    if ( number < size )
    {
        for ( int factor = 2; factor <= number / 2; factor++ )
        {
            if ( number % factor == 0 )
            {
                result = 0;
                break;
            }
        }

        all_prime_numbers[number] = result;
    }
}

C

KEY POINTS

1/15/25, 2:36 PM GPU Programming: Your First GPU Kernel

https://carpentries-incubator.github.io/lesson-gpu-programming/first_program.html 14/14


