Commit ea451690 authored by Hixie's avatar Hixie

fn3: Port HomogeneousViewport

parent 1836ca61
......@@ -7,3 +7,4 @@ library fn3;
export 'fn3/basic.dart';
export 'fn3/framework.dart';
export 'fn3/binding.dart';
export 'fn3/homogeneous_viewport.dart';
......@@ -504,7 +504,9 @@ abstract class Element<T extends Widget> implements BuildContext {
}
/// Called when an Element is given a new parent shortly after having been
/// created.
/// created. Use this to initialize state that depends on having a parent. For
/// state that is independent of the position in the tree, it's better to just
/// initialize the Element in the constructor.
void mount(Element parent, dynamic newSlot) {
assert(_debugLifecycleState == _ElementLifecycle.initial);
assert(widget != null);
......@@ -599,13 +601,13 @@ abstract class Element<T extends Widget> implements BuildContext {
}
}
typedef Widget WidgetBuilder(BuildContext context);
typedef void BuildScheduler(BuildableElement element);
class ErrorWidget extends LeafRenderObjectWidget {
RenderBox createRenderObject() => new RenderErrorBox();
}
typedef Widget WidgetBuilder(BuildContext context);
typedef void BuildScheduler(BuildableElement element);
/// Base class for the instantiation of StatelessComponent and StatefulComponent
/// widgets.
abstract class BuildableElement<T extends Widget> extends Element<T> {
......@@ -629,7 +631,7 @@ abstract class BuildableElement<T extends Widget> extends Element<T> {
/// stateless components) or the ComponentState object (for stateful
/// components) and then updates the widget tree.
///
/// Called automatically during didMount() to generate the first build, by the
/// Called automatically during mount() to generate the first build, by the
/// binding when scheduleBuild() has been called to mark this element dirty,
/// and by update() when the Widget has changed.
void rebuild() {
......@@ -658,6 +660,24 @@ abstract class BuildableElement<T extends Widget> extends Element<T> {
static BuildScheduler scheduleBuildFor;
static int _debugStateLockLevel = 0;
static bool get _debugStateLocked => _debugStateLockLevel > 0;
/// Calls the callback argument synchronously, but in a context where calls to
/// ComponentState.setState() will fail. Use this when it is possible that you
/// will trigger code in components but want to make sure that there is no
/// possibility that any components will be marked dirty, for example because
/// you are in the middle of layout and you are not going to be flushing the
/// build queue (since that could mutate the layout tree).
static void lockState(void callback()) {
_debugStateLockLevel += 1;
try {
callback();
} finally {
_debugStateLockLevel -= 1;
}
}
/// Marks the element as dirty and adds it to the global list of widgets to
/// rebuild in the next frame.
///
......@@ -666,6 +686,7 @@ abstract class BuildableElement<T extends Widget> extends Element<T> {
/// components dirty during event handlers before the frame begins, not during
/// the build itself.
void markNeedsBuild() {
assert(!_debugStateLocked);
assert(_debugLifecycleState == _ElementLifecycle.mounted);
if (_dirty)
return;
......@@ -804,6 +825,7 @@ abstract class RenderObjectElement<T extends RenderObjectWidget> extends Element
/// The underlying [RenderObject] for this element
RenderObject get renderObject => _renderObject;
final RenderObject _renderObject;
RenderObjectElement _ancestorRenderObjectElement;
RenderObjectElement _findAncestorRenderObjectElement() {
......@@ -840,6 +862,153 @@ abstract class RenderObjectElement<T extends RenderObjectWidget> extends Element
widget.updateRenderObject(renderObject, oldWidget);
}
/// Utility function for subclasses that have one or more lists of children.
/// Attempts to update the given old children list using the given new
/// widgets, removing obsolete elements and introducing new ones as necessary,
/// and then returns the new child list.
List<Element> updateChildren(List<Element> oldChildren, List<Widget> newWidgets) {
assert(oldChildren != null);
assert(newWidgets != null);
// This attempts to diff the new child list (this.children) with
// the old child list (old.children), and update our renderObject
// accordingly.
// The cases it tries to optimise for are:
// - the old list is empty
// - the lists are identical
// - there is an insertion or removal of one or more widgets in
// only one place in the list
// If a widget with a key is in both lists, it will be synced.
// Widgets without keys might be synced but there is no guarantee.
// The general approach is to sync the entire new list backwards, as follows:
// 1. Walk the lists from the top until you no longer have
// matching nodes. We don't sync these yet, but we now know to
// skip them below. We do this because at each sync we need to
// pass the pointer to the new next widget as the slot, which
// we can't do until we've synced the next child.
// 2. Walk the lists from the bottom, syncing nodes, until you no
// longer have matching nodes.
// At this point we narrowed the old and new lists to the point
// where the nodes no longer match.
// 3. Walk the narrowed part of the old list to get the list of
// keys and sync null with non-keyed items.
// 4. Walk the narrowed part of the new list backwards:
// * Sync unkeyed items with null
// * Sync keyed items with the source if it exists, else with null.
// 5. Walk the top list again but backwards, syncing the nodes.
// 6. Sync null with any items in the list of keys that are still
// mounted.
final ContainerRenderObjectMixin renderObject = this.renderObject; // TODO(ianh): Remove this once the analyzer is cleverer
assert(renderObject is ContainerRenderObjectMixin);
int childrenTop = 0;
int newChildrenBottom = newWidgets.length - 1;
int oldChildrenBottom = oldChildren.length - 1;
// top of the lists
while ((childrenTop <= oldChildrenBottom) && (childrenTop <= newChildrenBottom)) {
Element oldChild = oldChildren[childrenTop];
Widget newWidget = newWidgets[childrenTop];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (!_canUpdate(oldChild.widget, newWidget))
break;
childrenTop += 1;
}
List<Element> newChildren = oldChildren.length == newWidgets.length ?
oldChildren : new List<Element>(newWidgets.length);
Element nextSibling;
// bottom of the lists
while ((childrenTop <= oldChildrenBottom) && (childrenTop <= newChildrenBottom)) {
Element oldChild = oldChildren[oldChildrenBottom];
Widget newWidget = newWidgets[newChildrenBottom];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (!_canUpdate(oldChild.widget, newWidget))
break;
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
newChildren[newChildrenBottom] = newChild;
nextSibling = newChild;
oldChildrenBottom -= 1;
newChildrenBottom -= 1;
}
// middle of the lists - old list
bool haveOldNodes = childrenTop <= oldChildrenBottom;
Map<Key, Element> oldKeyedChildren;
if (haveOldNodes) {
oldKeyedChildren = new Map<Key, Element>();
while (childrenTop <= oldChildrenBottom) {
Element oldChild = oldChildren[oldChildrenBottom];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (oldChild.widget.key != null)
oldKeyedChildren[oldChild.widget.key] = oldChild;
else
_detachChild(oldChild);
oldChildrenBottom -= 1;
}
}
// middle of the lists - new list
while (childrenTop <= newChildrenBottom) {
Element oldChild;
Widget newWidget = newWidgets[newChildrenBottom];
if (haveOldNodes) {
Key key = newWidget.key;
if (key != null) {
oldChild = oldKeyedChildren[newWidget.key];
if (oldChild != null) {
if (_canUpdate(oldChild.widget, newWidget)) {
// we found a match!
// remove it from oldKeyedChildren so we don't unsync it later
oldKeyedChildren.remove(key);
} else {
// Not a match, let's pretend we didn't see it for now.
oldChild = null;
}
}
}
}
assert(oldChild == null || _canUpdate(oldChild.widget, newWidget));
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.mounted);
newChildren[newChildrenBottom] = newChild;
nextSibling = newChild;
newChildrenBottom -= 1;
}
assert(oldChildrenBottom == newChildrenBottom);
assert(childrenTop == newChildrenBottom + 1);
// now sync the top of the list
while (childrenTop > 0) {
childrenTop -= 1;
Element oldChild = oldChildren[childrenTop];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
Widget newWidget = newWidgets[childrenTop];
assert(_canUpdate(oldChild.widget, newWidget));
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.mounted);
newChildren[childrenTop] = newChild;
nextSibling = newChild;
}
// clean up any of the remaining middle nodes from the old list
if (haveOldNodes && !oldKeyedChildren.isEmpty) {
for (Element oldChild in oldKeyedChildren.values)
_detachChild(oldChild);
}
assert(renderObject == this.renderObject); // TODO(ianh): Remove this once the analyzer is cleverer
return newChildren;
}
void unmount() {
super.unmount();
widget.didUnmountRenderObject(renderObject);
......@@ -995,152 +1164,8 @@ class MultiChildRenderObjectElement<T extends MultiChildRenderObjectWidget> exte
void update(T newWidget) {
super.update(newWidget);
assert(widget == newWidget);
_children = _updateChildren(_children, widget.children);
}
List<Element> _updateChildren(List<Element> oldChildren, List<Widget> newWidgets) {
assert(oldChildren != null);
assert(newWidgets != null);
// This attempts to diff the new child list (this.children) with
// the old child list (old.children), and update our renderObject
// accordingly.
// The cases it tries to optimise for are:
// - the old list is empty
// - the lists are identical
// - there is an insertion or removal of one or more widgets in
// only one place in the list
// If a widget with a key is in both lists, it will be synced.
// Widgets without keys might be synced but there is no guarantee.
// The general approach is to sync the entire new list backwards, as follows:
// 1. Walk the lists from the top until you no longer have
// matching nodes. We don't sync these yet, but we now know to
// skip them below. We do this because at each sync we need to
// pass the pointer to the new next widget as the slot, which
// we can't do until we've synced the next child.
// 2. Walk the lists from the bottom, syncing nodes, until you no
// longer have matching nodes.
// At this point we narrowed the old and new lists to the point
// where the nodes no longer match.
// 3. Walk the narrowed part of the old list to get the list of
// keys and sync null with non-keyed items.
// 4. Walk the narrowed part of the new list backwards:
// * Sync unkeyed items with null
// * Sync keyed items with the source if it exists, else with null.
// 5. Walk the top list again but backwards, syncing the nodes.
// 6. Sync null with any items in the list of keys that are still
// mounted.
final ContainerRenderObjectMixin renderObject = this.renderObject; // TODO(ianh): Remove this once the analyzer is cleverer
assert(renderObject is ContainerRenderObjectMixin);
int childrenTop = 0;
int newChildrenBottom = newWidgets.length - 1;
int oldChildrenBottom = oldChildren.length - 1;
// top of the lists
while ((childrenTop <= oldChildrenBottom) && (childrenTop <= newChildrenBottom)) {
Element oldChild = oldChildren[childrenTop];
Widget newWidget = newWidgets[childrenTop];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (!_canUpdate(oldChild.widget, newWidget))
break;
childrenTop += 1;
}
List<Element> newChildren = oldChildren.length == newWidgets.length ?
oldChildren : new List<Element>(newWidgets.length);
Element nextSibling;
// bottom of the lists
while ((childrenTop <= oldChildrenBottom) && (childrenTop <= newChildrenBottom)) {
Element oldChild = oldChildren[oldChildrenBottom];
Widget newWidget = newWidgets[newChildrenBottom];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (!_canUpdate(oldChild.widget, newWidget))
break;
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
newChildren[newChildrenBottom] = newChild;
nextSibling = newChild;
oldChildrenBottom -= 1;
newChildrenBottom -= 1;
}
// middle of the lists - old list
bool haveOldNodes = childrenTop <= oldChildrenBottom;
Map<Key, Element> oldKeyedChildren;
if (haveOldNodes) {
oldKeyedChildren = new Map<Key, Element>();
while (childrenTop <= oldChildrenBottom) {
Element oldChild = oldChildren[oldChildrenBottom];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
if (oldChild.widget.key != null)
oldKeyedChildren[oldChild.widget.key] = oldChild;
else
_detachChild(oldChild);
oldChildrenBottom -= 1;
}
}
// middle of the lists - new list
while (childrenTop <= newChildrenBottom) {
Element oldChild;
Widget newWidget = newWidgets[newChildrenBottom];
if (haveOldNodes) {
Key key = newWidget.key;
if (key != null) {
oldChild = oldKeyedChildren[newWidget.key];
if (oldChild != null) {
if (_canUpdate(oldChild.widget, newWidget)) {
// we found a match!
// remove it from oldKeyedChildren so we don't unsync it later
oldKeyedChildren.remove(key);
} else {
// Not a match, let's pretend we didn't see it for now.
oldChild = null;
}
_children = updateChildren(_children, widget.children);
}
}
}
assert(oldChild == null || _canUpdate(oldChild.widget, newWidget));
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.mounted);
newChildren[newChildrenBottom] = newChild;
nextSibling = newChild;
newChildrenBottom -= 1;
}
assert(oldChildrenBottom == newChildrenBottom);
assert(childrenTop == newChildrenBottom + 1);
// now sync the top of the list
while (childrenTop > 0) {
childrenTop -= 1;
Element oldChild = oldChildren[childrenTop];
assert(oldChild._debugLifecycleState == _ElementLifecycle.mounted);
Widget newWidget = newWidgets[childrenTop];
assert(_canUpdate(oldChild.widget, newWidget));
Element newChild = updateChild(oldChild, newWidget, nextSibling);
assert(newChild._debugLifecycleState == _ElementLifecycle.mounted);
assert(oldChild == newChild || oldChild == null || oldChild._debugLifecycleState != _ElementLifecycle.mounted);
newChildren[childrenTop] = newChild;
nextSibling = newChild;
}
// clean up any of the remaining middle nodes from the old list
if (haveOldNodes && !oldKeyedChildren.isEmpty) {
for (Element oldChild in oldKeyedChildren.values)
_detachChild(oldChild);
}
assert(renderObject == this.renderObject); // TODO(ianh): Remove this once the analyzer is cleverer
return newChildren;
}
}
typedef void WidgetsExceptionHandler(String context, dynamic exception, StackTrace stack);
......
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'package:sky/rendering.dart';
import 'package:sky/src/fn3/framework.dart';
import 'package:sky/src/fn3/basic.dart';
typedef List<Widget> ListBuilder(int startIndex, int count, BuildContext context);
class HomogeneousViewport extends RenderObjectWidget {
HomogeneousViewport({
Key key,
this.builder,
this.itemsWrap: false,
this.itemExtent, // required
this.itemCount, // optional, but you cannot shrink-wrap this class or otherwise use its intrinsic dimensions if you don't specify it
this.direction: ScrollDirection.vertical,
this.startOffset: 0.0
}) : super(key: key) {
assert(itemExtent != null);
}
final ListBuilder builder;
final bool itemsWrap;
final double itemExtent;
final int itemCount;
final ScrollDirection direction;
final double startOffset;
RenderObjectElement createElement() => new HomogeneousViewportElement(this);
// we don't pass constructor arguments to the RenderBlockViewport() because until
// we know our children, the constructor arguments we could give have no effect
RenderObject createRenderObject() => new RenderBlockViewport();
bool isLayoutDifferentThan(HomogeneousViewport oldWidget) {
return itemsWrap != oldWidget.itemsWrap ||
itemsWrap != oldWidget.itemsWrap ||
itemExtent != oldWidget.itemExtent ||
itemCount != oldWidget.itemCount ||
direction != oldWidget.direction ||
startOffset != oldWidget.startOffset;
}
// all the actual work is done in the element
}
class HomogeneousViewportElement extends RenderObjectElement<HomogeneousViewport> {
HomogeneousViewportElement(HomogeneousViewport widget) : super(widget);
List<Element> _children = const <Element>[];
bool _layoutDirty = true;
int _layoutFirstIndex;
int _layoutItemCount;
RenderBlockViewport get renderObject => super.renderObject;
void visitChildren(ElementVisitor visitor) {
if (_children == null)
return;
for (Element child in _children)
visitor(child);
}
void mount(Element parent, dynamic newSlot) {
super.mount(parent, newSlot);
renderObject.callback = layout;
renderObject.totalExtentCallback = getTotalExtent;
renderObject.minCrossAxisExtentCallback = getMinCrossAxisExtent;
renderObject.maxCrossAxisExtentCallback = getMaxCrossAxisExtent;
}
void unmount() {
renderObject.callback = null;
renderObject.totalExtentCallback = null;
renderObject.minCrossAxisExtentCallback = null;
renderObject.maxCrossAxisExtentCallback = null;
super.unmount();
}
void update(HomogeneousViewport newWidget) {
bool needLayout = newWidget.isLayoutDifferentThan(widget);
super.update(newWidget);
if (needLayout)
renderObject.markNeedsLayout();
else
_updateChildren();
}
void layout(BoxConstraints constraints) {
// we lock the framework state (meaning that no elements can call markNeedsBuild()) because we are
// in the middle of layout and if we allowed people to set state, they'd expect to have that state
// reflected immediately, which, if we were to try to honour it, would potentially result in
// assertions since you can't normally mutate the render object tree during layout. (If there was
// a way to limit this to only descendants of this, it'd be ok, since we are exempt from that
// assert since we are actively doing our own layout still.)
BuildableElement.lockState(() {
double mainAxisExtent = widget.direction == ScrollDirection.vertical ? constraints.maxHeight : constraints.maxWidth;
double offset;
if (widget.startOffset <= 0.0 && !widget.itemsWrap) {
_layoutFirstIndex = 0;
offset = -widget.startOffset;
} else {
_layoutFirstIndex = (widget.startOffset / widget.itemExtent).floor();
offset = -(widget.startOffset % widget.itemExtent);
}
if (mainAxisExtent < double.INFINITY) {
_layoutItemCount = ((mainAxisExtent - offset) / widget.itemExtent).ceil();
if (widget.itemCount != null && !widget.itemsWrap)
_layoutItemCount = math.min(_layoutItemCount, widget.itemCount - _layoutFirstIndex);
} else {
assert(() {
'This HomogeneousViewport has no specified number of items (meaning it has infinite items), ' +
'and has been placed in an unconstrained environment where all items can be rendered. ' +
'It is most likely that you have placed your HomogeneousViewport (which is an internal ' +
'component of several scrollable widgets) inside either another scrolling box, a flexible ' +
'box (Row, Column), or a Stack, without giving it a specific size.';
return widget.itemCount != null;
});
_layoutItemCount = widget.itemCount - _layoutFirstIndex;
}
_layoutItemCount = math.max(0, _layoutItemCount);
_updateChildren();
// Update the renderObject configuration
renderObject.direction = widget.direction == ScrollDirection.vertical ? BlockDirection.vertical : BlockDirection.horizontal;
renderObject.itemExtent = widget.itemExtent;
renderObject.minExtent = getTotalExtent(null);
renderObject.startOffset = offset;
});
}
void _updateChildren() {
assert(_layoutFirstIndex != null);
assert(_layoutItemCount != null);
List<Widget> newWidgets;
if (_layoutItemCount > 0)
newWidgets = widget.builder(_layoutFirstIndex, _layoutItemCount, this);
else
newWidgets = <Widget>[];
_children = updateChildren(_children, newWidgets);
}
double getTotalExtent(BoxConstraints constraints) {
// constraints is null when called by layout() above
return widget.itemCount != null ? widget.itemCount * widget.itemExtent : double.INFINITY;
}
double getMinCrossAxisExtent(BoxConstraints constraints) {
return 0.0;
}
double getMaxCrossAxisExtent(BoxConstraints constraints) {
if (widget.direction == ScrollDirection.vertical)
return constraints.maxWidth;
return constraints.maxHeight;
}
void insertChildRenderObject(RenderObject child, Element slot) {
RenderObject nextSibling = slot?.renderObject;
renderObject.add(child, before: nextSibling);
}
void moveChildRenderObject(RenderObject child, dynamic slot) {
RenderObject nextSibling = slot?.renderObject;
renderObject.move(child, before: nextSibling);
}
void removeChildRenderObject(RenderObject child) {
assert(child.parent == renderObject);
renderObject.remove(child);
}
}
import 'package:sky/src/fn3.dart';
import 'package:test/test.dart';
import 'widget_tester.dart';
class TestComponent extends StatefulComponent {
TestComponent(this.viewport);
final HomogeneousViewport viewport;
TestComponentState createState() => new TestComponentState(this);
}
class TestComponentState extends ComponentState<TestComponent> {
TestComponentState(TestComponent config): super(config);
bool _flag = true;
void go(bool flag) {
setState(() {
_flag = flag;
});
}
Widget build(BuildContext context) {
return _flag ? config.viewport : new Text('Not Today');
}
}
void main() {
test('HomogeneousViewport mount/dismount smoke test', () {
WidgetTester tester = new WidgetTester();
List<int> callbackTracker = <int>[];
// the root view is 800x600 in the test environment
// so if our widget is 100 pixels tall, it should fit exactly 6 times.
Widget builder() {
return new TestComponent(new HomogeneousViewport(
builder: (int start, int count, BuildContext context) {
List<Widget> result = <Widget>[];
for (int index = start; index < start + count; index += 1) {
callbackTracker.add(index);
result.add(new Container(
key: new ValueKey<int>(index),
height: 100.0,
child: new Text("$index")
));
}
return result;
},
startOffset: 0.0,
itemExtent: 100.0
));
}
tester.pumpFrame(builder());
TestComponentState testComponent = tester.findElement((element) => element.widget is TestComponent).state;
expect(callbackTracker, equals([0, 1, 2, 3, 4, 5]));
callbackTracker.clear();
testComponent.go(false);
tester.pumpFrameWithoutChange();
expect(callbackTracker, equals([]));
callbackTracker.clear();
testComponent.go(true);
tester.pumpFrameWithoutChange();
expect(callbackTracker, equals([0, 1, 2, 3, 4, 5]));
});
test('HomogeneousViewport vertical', () {
WidgetTester tester = new WidgetTester();
List<int> callbackTracker = <int>[];
// the root view is 800x600 in the test environment
// so if our widget is 200 pixels tall, it should fit exactly 3 times.
// but if we are offset by 300 pixels, there will be 4, numbered 1-4.
double offset = 300.0;
ListBuilder itemBuilder = (int start, int count, BuildContext context) {
List<Widget> result = <Widget>[];
for (int index = start; index < start + count; index += 1) {
callbackTracker.add(index);
result.add(new Container(
key: new ValueKey<int>(index),
width: 500.0, // this should be ignored
height: 400.0, // should be overridden by itemExtent
child: new Text("$index")
));
}
return result;
};
TestComponent testComponent;
Widget builder() {
testComponent = new TestComponent(new HomogeneousViewport(
builder: itemBuilder,
startOffset: offset,
itemExtent: 200.0
));
return testComponent;
}
tester.pumpFrame(builder());
expect(callbackTracker, equals([1, 2, 3, 4]));
callbackTracker.clear();
offset = 400.0; // now only 3 should fit, numbered 2-4.
tester.pumpFrame(builder());
expect(callbackTracker, equals([2, 3, 4]));
callbackTracker.clear();
});
test('HomogeneousViewport horizontal', () {
WidgetTester tester = new WidgetTester();
List<int> callbackTracker = <int>[];
// the root view is 800x600 in the test environment
// so if our widget is 200 pixels wide, it should fit exactly 4 times.
// but if we are offset by 300 pixels, there will be 5, numbered 1-5.
double offset = 300.0;
ListBuilder itemBuilder = (int start, int count, BuildContext context) {
List<Widget> result = <Widget>[];
for (int index = start; index < start + count; index += 1) {
callbackTracker.add(index);
result.add(new Container(
key: new ValueKey<int>(index),
width: 400.0, // this should be overridden by itemExtent
height: 500.0, // this should be ignored
child: new Text("$index")
));
}
return result;
};
TestComponent testComponent;
Widget builder() {
testComponent = new TestComponent(new HomogeneousViewport(
builder: itemBuilder,
startOffset: offset,
itemExtent: 200.0,
direction: ScrollDirection.horizontal
));
return testComponent;
}
tester.pumpFrame(builder());
expect(callbackTracker, equals([1, 2, 3, 4, 5]));
callbackTracker.clear();
offset = 400.0; // now only 4 should fit, numbered 2-5.
tester.pumpFrame(builder());
expect(callbackTracker, equals([2, 3, 4, 5]));
callbackTracker.clear();
});
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment